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ABSTRACT OF THE DISSERTATION

Symmetric Functions of the Eigenvalues of a Matrix

by
Andrius Kulikauskas
Doctor of Philosophy in Mathematics
University of California, San Diego, 1993

Professor Jeffrey B. Remmel, Chair

Consider a matrix A € GL,, (C) with eigenvalues &,,...,&,. This thesis provides
combinatorial interpretations for six bases of the ring of symmetric functions when they
are evaluated at £,..., &, in terms of the entries of A = (a,.j)lg'jSN. For each basis the
usual definition is then recovered upon setting @, =0 whenever i # j, so that &,...,&y
are given by a,,,...,a,,. The bases considered are the elementary {el}, power {1’,1}’
homogeneous {Igl } forgotten {f{1 } monomial {ml} symmetric functions, and the Schur
functions {sl}.

The equation h,(&,,...,Ey ) = % 21)”(51,...,§N) yields an original interpretation
for h,(&,,...,E,) interms of multisets olll’tlhjyndon words on 1,...,N. The same method
describes [ (&,,...,&y) in terms of multisets of Lyndon words on an alphabet

1,...,N,1,...,N of upper and lower case letters such that A records the distances between

the upper case letters. A similar approach expresses ml(él,..., éN) as those terms from



-

the determinant of the walk matrix det(I/(I—-A)) for which the lengths of the walks
involved are given by A .

Theorem 4.3.1 expresses s, (&,....,€y ) in terms of rim hook tableaux. Each hook
R, is associated with a Lyndon word ¢;, andif £, = fj, i < J, then the start of Rj isina
column to the right of the start of R,. This generalizes the fact that s, generates column
strict tableaux. The proof depends on lemmas which relate rim hook tableaux and special
rim hook tabloids. Also included is a new formula s, (&,....&y ) =
derl(av) ) fae(ar),)

Evaluating symmetric functions at eigenvalues may provide a unifying framework

for disparate results in combinatorial matrix algebra. In such a context, the techniques

used to interpret ne, = z‘(—l)"I p,e,., are the same as those used to prove the Cayley-

r=1 n
Hamilton theorem, and those used to interpret Z(—l)’erhn_, = 0 are those used to prove
r=0

the MacMahon Master theorem. In a sense, evaluating symmetric functions at
eigenvalues establishes a Master theory because A may be specialized in profitable
ways. For example, if A is in rational canonical form, then the expansion of a symmetric
function F in terms of {e, } is embedded in the expression for F(&,,....&, ).

The Appendix contains a new and simplest known proof that

_ A AN~ N—i . QEe]
S (Xpeen Xy ) = det(x : )155,,51\/ / det(x]"~ generates column strict tableaux.

)151,151\/







CHAPTER 1
INTRODUCTION

The determinant det(A) ol an N XN matrix A € G, (CT) is the product of its
cigenvalues &,,...,&,. The trace tr(A) of A is the sum of its cigenvalues. These are
symmetric functions ey (x,...,xy ) = x,2,°-- X and ¢ (X)sees Xy ) = X, + Xy ..k xyy that have
been evaluated at the eigenvalues 51,...,6 v- Symmetric {unctions are very rich in
combinatorics. This thesis evaluates six bases of the ring of symmetric functions at the
cigenvalues E,,...,&, of an N X N matrix A = {a"f}ls.'.jszv and considers the combinatorial
objects that they generate.

From the point of view of algebra, the problem is straightforward. A symmetric
function F(x,...,xy) €Z|x,,...,xy ] is a polynomial with the property that
F(xg(l),...,x”w)) = F(x,,...,xy ) for all permutations ¢ € S. The fundamental theorem of
symmetric functions states that any symmetric function can be expanded in terms of
clementary symmetric functions ¢, H"x yA=(A,04,), A, 24, 2.2 4, >0, where
e, (xl,...,xN) = Ex,.‘xiz---xi" Clt lhercfom sulfices for us to evaluate the clementary

1i <...<i, <N

symimetric functions e, (&, ,ZjN) I<n<N. Butthese are gencrated by the function

det(I+xA)= H (1+x¢,) Ex ¢, (&), Ey ). The coefficient of x" in
i=1

I +xa,  xa, - xapy
Xty IHxa,, 0 Xdyy
det . : .
Xy, Xy, - T+xayy




8%

is the sum of the determinants of the n X n principal minors of A. This allows us to
calculate any symmetric function F(x,,...,x,v), so long as we know how to expand
F= Z Mxlvm.ﬂ,ﬁ‘)h in terms of ¢lementary symmetric functions.

222,30, r20 i=1

It is from the point of view of combinatorics that our problem becomes
interesting. There are infinitely many bases of the ring of symmetric functions, but our
attention is captured by six bases. They are the power {Pz }“", elementary {e/1 }“",
homogeneous {/zA }M_“, monomial {mﬂl }““, forgotten {fA }b" symmetric functions, and
finally, the Schur functions {.\'A }A:_", all of which we define in Section 1.1. The
importance of these bases is made manifest by their role in the representation theory of
the symmetric group Sy- This role is most succinctly expressed by the formula
b(x,,.. LXy)= 2[’ 5(X15...,xy ) where ch is the Frobenius characteristic map and
B is the characteraf;f Sy for which b =ch(B). And yet at times it seems that something
deeper hides within the personalities of these six bases, as if they reflect schemes by
which our own minds orgunize variables. Tn any event, interpreting equations that relate
symmetric functions is one of the richest areas of algebraic combinatori :s.

This thesis contributes the observation that evaluating a basis {Fl(fl,...,ij,\,)}“"
for the symmetric functions at the eigenvalues & ,...,&, of an N XN mutrix A only
serves to increase the wealth of combinatorial structure that it holds. Tlat this is true can
be seen from the fact that setting the off-diagonal elements of A = {(z,.j}’si'jsN equal to
zero leaves us with a diagonal matrix with eigenvalues «,,...,ayy, and F, (xl,...,xN)
becomes F, (a,,,...,ayy ). Tor example, setting a;=0,i#j,1<i,j< N, eliminates all
of the terms of ¢y(&,,...,&y ) = det(A) except @y, +-ayy, and setting a; =x;, 1<i<N,
recovers ey(X,,...,xy) = XX, xy. The fact that ey (&,,....&, ) =det(A) is a generating
function for the elements of S,, only emphasizes the difference between the algebraic

oint of view, in which I, (&,,..., &, ) is a specialization of 17 {x,,...,xy ), and the
A\51 5w A\ N

combinatorial point of view, in which F, (£,,...,£,) is a generalization of F,(x,,...,xy ).




What kind of objects do symmetric functions {Fl(él,...,é,‘,)}b" generate 7 The
elementary symmetric functions {el (51 ,...,5,\,)}/1> help supply an answer. A term from
e,(&,.....&y ) can be described as a weight associated with a set of disjoint cycles, as in

the example below, where n=06, N =9, and the weight is aa,,a;,0,,a,0,,.

It follows that a symmetric function F, (&,,...,€,) generates terms that can be understood
as weights associated with multisets of cycles. In practice, the multisets that arise are
interpreted in terms ol various combinatorial objects, including closed walks and Lyndon
words, but these objects are always circular in nature. In greatest generality, the
combinatorial phenomena that develop involve objects which resemble cycles, but may

have letters that appear more than once, as in the example below.

In Section 1.3 we formalize these objects and call them walkalongs. Throughout this
thesis we find that various operations on these walkalongs occur over and over again in a
variety of settings.

However, the more significant results of this thesis rely on combinatorial tools
that allow us to express the six bases in terms of each other. These are tableaux and

tabloids that provide combinatorial interpretations lor the entries of the transition



matrices that relate the six bases. Best known are the column strict tableaux and rim
hook tableaux. But we also make good use of brick tabloids, weighted brick tabloids, and
special rim hook tabloids, recently introduced by Egecioglu and Remmel [ERI][ER2].
Both the tableaux and the tabloids are defined in Section 1.2.

Theorems 3.3.1 and 4.3.1 are the two main results of this thesis. Theorem 3.3.1
evaluates the forgotten symmetric functions fl(fl,...,fN ) The terms that they generate
involve Lyndon words on an alphabet 1 <...< N <1<...< N of upper case and lower case
letters. This is a surprising result because it suggests that j"A(éfl,...,ZjN) has arguably the
most natural expression of any of the bases that we consider, whercas a combinatorial
expression for the forgotien symmetric functions f, (xl,...,xN) was arrived at only
recently. Theorem 4.3.1 is an expression for the Schur functions \A(J,léw) in terms of
rim hook tablcuaux that generalizes the fact that s, (,\71,...,,\‘N) is generates column strict
tableaux. The rim hook tableaux are constructed so that each rim hook is associated with
a Lyndon word. Rim hooks that are associated with the same Lyndon word are layed
down in a descending order. Seuting ¢; =0, i#j, 1 SL,j<N, , 1SiEN,
recovers the usual description of the Schur functions in terms of column strict tablcaux.

In Chapter 2 we discuss the power p,(&,,...,Ey ), clementary ¢,(&,....,&y ), and
homogeneous lzn(él,...,ij) symmctric {unctions. Wc start by {inding combinatorial
interpretations for the three recursion relations that relate these bases, and they suggest
that symmetric functions of eigenvalues provide a unifying framework for the
combinatorics of matrix algebra. First, we rclate Straubing's | Str] combinatorial proof of
the Cayley-Hamilton theorem with an interpretation of ae,(&,,...,¢y ) =
i(——l)’"lpr(él, vEn)en (&b Ey). Second, we relate a combinatorial interpretation of
nh (e Zp (Epen &y R (&en, Ey) With the factorization of words into

Lyndon words. Tlnrd, we relate Foata's [CF] combinatorial proof of the MacMahon



Master theorem with a combinatorial interpretation of

P 1Y € (G BV (e )0

r=0
Most of our attention in the rest of chapter 2 is devoted to the homogeneous

symmetric functions. We provide four different interpretations for h,(&,,...,&, ),
including an original onc in terms of multisets ol Lyndon words. All of these are referred
to in later chapters. We also study the walk matrix, the trace of which tr(I/(1-xA))

N
= 2(1/ (1-x¢, ) = Zx”p” Epveer &) generates the power symmelric functions, and the

determmant of which det(]/ (I-xA))= H( - x&, ) E,x"h" &,....&y) gencrates the

i=1 n=0
homogencous symmetric functions.

Chapter 3 provides a combinatorial interpretation of the forgotten f, (&,,...,&y)

=1 (ch fl)(o)p (&,,-...&y) and the monomial symmetric functions

”l ges,
1 - : . " . .
iy (Eprennn &) = —TZ(Ch i )(0)Py (&0 €y ). Section 3.1 discusses an inunanant
rIeS
formula [)((.fl,“ 2 lmm, A from Lilllcwoo(l\ book, and shows that it is
1! weN"
combinatorially cquwalent to I)(él,.. ZB (0)p,(&poeenEy). Section 3.2 further
neS

prepares the way by showing how Egccnoglu and Remmel JER2| use weighted brick
tabloids to interpret the character (ch" f; )((7) = sgn(o’)-(ch" n, )(cr) Our cfforts lcad
to two combinatorial interpretations of f,(&,,...,&y), one of which is the Theorem 3.3.1
mentioned above. We also arrive at an expression for the monomial symmnetric function
in terms of the determinant det(I/(I - xA)) of the walk matrix. With the help of an

involution from Section 2.3, this gives a striking interpretation of the equation

hn (Dl’ anl él’ )

Arn
In Chapter 4 we consider two new expressions for the Schur functions

8, ({j, s Ey ) The chapter starts with Theorem 4.1.1, which presents an original formula

sl(fjl,...,f,\, ) = det((AlﬂN—i)jf)lgi,jsN/du((AN )H)

126, /<N



that brings to mind the usual quotient formula s, (,\‘1,...,_\'N) =
det(x}'*”‘i)KUSN/det(,\'f_")lg‘jw. Next, Theorem 4.3.1, as mentioned above, presents
an expression for s, (él,...,éN) in terms of rim hook tableaux and Lyndon words. In
Section 4.2 we prepare the way for the proof of this theorem by undertaking a study of
the relation between rim hook tableaux and special rim hook tabloids.

Finally, in Section 4.4 we complete our picture of symmetric functions of
eigenvalues by acknowledging perhaps the most important fact about them, which is that
sl(fl,...,cf,v) is the trace of the irreducible representation of the general linear group
GL, (C) associated with the partition A. We do not offer any new results, but simply
present explicit representations due to Littlewood |L], and take their trace. The
representations are straightforwa~d when A is a hook shape, and they bring to mind
Foata's [CF] circuits, which we discuss in Section 2.2. In general, however, when A is
an arbitrary shape the representa:ions are more complicated and unwieldy.

In the conclusion of this ‘hesis we offer the theory of symmetric functions as a
unifying framework for disparate results in matrix algebra. Many of the combinatorial
techniques in the last chapter ol Brualdi and Ryser's [BR| recent book can be understood
in terms of symmetric functions evaluated at the eigenvalues &,...,Ey of an N X N
matrix A. Another idea presented in the conclusion is that specializing A in various
ways may make the results of this thests uselul in a variety of algebraic situations. The
thesis ends with our hope that the results may in some small way prove helpful in the
study of algebraic structures such as the free Lie algebra, or the representations of the
general linear group GL (C).

Also included in this thesis are laconic proofs of two classical results in the theory
of symmetric functions. An Appendix presents a new combinatorial proof that the
quotient of alternants det(xf‘*”"’)lsi'jgN/del'(.rf“")M ien generates column strict tableaux.

This proof is the shortest known and does not involve crossmultiplying by



det(x;" i )15- - Asecond result is to be found at the end of Section 4.3. It is a quick
i)

combinatorial proof of the fact that the usual calculation of the irreducible character

2 (o) of S, by way of rim hook tableaux does not depend on the order chosen for the

lengths of the rim hooks. This proof depends on techniques for manipulating rim hooks

that are discussed in Section 4.2.



SECTION 1.1 SYMMETRIC FUNCTIONS

In this section we define the six bases of the ring of the symmetric functions
which are the subject of this thesis. We also review several of the equations that relate
these bases. Many of these are of the form b, = EM(b,a) 2.2, » and we defer the
combinatorial interpretation of the matrix entries“lilnl(b,a)m until Section 1.2. We do,
however, make several remarks about equations b, = ZM(b, p)m p, thatexpand a
symmetric function b, in terms of the power symmetrlil::nfunctions {p,1 } 1qe Such
equations often arise in the form ch(B‘) = %231(#)@1),, , where B* is a character or
virtual character of the symmetric group S,. . Xlnthough the results of this thesis do not
depend on concepts or facts from representation theory, it may be argued that features of
the theory appear implicitly. Rather than recount this theory, we illustrate it by
considering the case of 3x 3 permutation matrices. Finally, we end this section with a
discourse on the six bases defined above, with a sketch of their various personalities. It is
our hope that the results in this thesis will shed more light on the nature of these bases.

Given a vector space, it is possible to express its elements in terms of a basis.
Such expressions can be extremely practical to work with. From them we can tell the
magnitude with which members of the basis are present in a given vector, and we can tell
which members are not present at all. However, these expressions depend on the choice
of basis, and in general there are infinitely many bases to choose from. Through most of

this century an attitude has held sway that to express mathematical ideas clearly it is best

not to work with a concrete basis. In the words of Herstein,

As a general principle, it is preferable to give proofs, whenever possible,
which are basis-free. Such proofs are usually referred to as invariant ones.
An invariant proof or construction has the advantage, other than the mere
aesthetic one, over a proof or construction using a basis, in that one does not
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have to worry how fincly everything depends on a particular choice of bases.
[H, 187]

Even when one does work with a basis, it is often with a single basis that suggests itself
from the way the vector space is defined, a "natural” coordinate system.

As we turn to study the ring of symmetric functions, we find ourselves in a very
different situation. Our attention is captured by six of the infinitely many bases available.
For each of these six bases there is a different context in which it seems natural and a
different reason for why it is interesting. But the importance of all six of these bases has
been borne out by the developments and achieveiments of representation theory and these
bases have a special significance to the theory of the symmetric group.

Let Z[xl,...,x,v] denote the ring of polynomials in the commuting variables
Xpyeen X, Then l)(xl,...,xN) is a symmnretric function it and only if l)(.\‘x,.,.,,\‘,\,) €
Z[xl,...,x,v] and l)(xn(l),xa(z),...,,\'U(N)) = I)(x],xz,...,,\‘N) for all permutations o€ S,. The
symumetric functions form a subring A, of Z[xl,...,x,v] which is known as the ring of
symmetric functions.

A, isaZ-module. In this thesis for most purposes it will be simiplest to think of
A, as a vector space with cocfficients in Q or C. This mercly requires that we suppose
the coefficients to be not exclusively integers, but rational or complex numbers in
general. When we think of A, as either a Z-module or a vector space, then within A,
we tend to work with A, which consists of the symmetric functions homogeneous of
degree n, thatis, symmetric functions whose every term is of degree n. The zero
polynomial is also included in A’y. In general, we assume that N 2 n.

The dimension of A}, as a Z-module or as a vector space is the number of
partitions of 1. We define a partition A of n to be a sequence 4,,...,4, of n non-
negative integers written in decreasing order A, 2...2 A, 20 sucli that A, +...+4, = n.

The length (1) of A is the number of nonzero integers in the sequence, and therefore
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A;=0when ((A)< j<n. If j>n, then it is always understood that 4, =0. We write
A > n to emphasize that A is a partition of .

The members of any basis of A", can be indexed by partitions, as can the rows
and columns of any transition matrix. In writing down the entries of transition matrices
there is a need for an ordering of the partitions, although it plays no role in our results.
The reverse lexicographic ordering is used throughout. With regard to this ordering A
precedes pt if there exists an i such that A; =, forall j<i and 4, > u,. Partitions are
then written in decreasing order. For example, the partitions of 5 are written as:

5,41, 32, 311,221, 2111, 11111,

The subject of this thesis is the combinatorics of the six bases of A’ that follow.
Although the definitions all depend on the number of variables N, the bases are all
defined so that equations relating their members hold for all N, so long as it is fixed and
N2n.

The power symmetric functions { s } 1., are defined by p, = H p,, where
p,=x/+..+xy, r>0,and p, = 1. e

The elementary symmetric functions {"1 } 1., dre defined by ¢, = Hel_ where
~H i

A;>0
= - 3 : : =
e, ijl,\jz‘..d\j', r>0,and ¢, = 1.
hi<h <<, )
Uhe homogeneous symmetric functions {hl } .., are defined by h, = th_ where
n i
;>0

h fo.-";:--'»“j,.» r>0,and i, =1.

WSS,

The monomial symmetric functions { ni A} are defined by

A-n

m, = Zr“ v* . x*  where the sum is taken over all permutations o of the numbers
. Xoy ¥ oty Xatn) : s all p g

,2,...,N such that o(i) < o(/) if both i< jand 4, =4 ,.

The Schur functions {Sl } 1., are defined by

det(xf"w"")

T det(x)

1<i,j<N

1<i,jSN
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A definition in terms of column strict tableaux is given in Scction 1.2.

The forgotten symmetric functions { £ }AH‘ are defined by f, = a)(ml) where @
is the involution on A, which maps ¢, into /i, and vice versa. A definition in terms of
brick tabloids is given in Section 1.2,

We elaborate on the involution @ mentioned above. There exists a ring
homomorphism @ on A, such that a)(e") = /i, for all n. From the symmetry of the 2's

n

and the e's in the recursion relation Z -1)e/
r=0
which says that @ is an involution. It can be shown that a)(pl) =sgn(A)p, , where

= 0 it follows that o(w(e,))=e,,

r Il"‘l’

sgn(A) = [T(~1)*" is the usual sign of the cycle structure A. Morcover, (s, ) = 5,.,
1<isn
where A7 is the shape conjugate to A, as defined at the end of Section 1.2. Finally,
suppose that A, is cndowed with an inner product defined by declaring ( “) 51# ,
with §,, =1 and 51“ =0if A # . Then w is an isometry with regard to this inner
product, which is to say that (f,g) = <a)(f),a)(g)> forall f,ge A,. Itcan be shown that
. . n! .
(fpi,l> O (ml,h“> =0y, and (pl,p“> =12,0,,, wheie z, = o and €7 is the
A
number of permutations for which the cycles have lengths given by A > n. The usual

refercnce to the theory of symmetric functions is Macdonald's book, Symnietric

Functions and Hall Polynomials. |M|

Equations that relate the six bases defined above do not depend on N, so long as

N is fixed and N 2 n, as we have already remarked. The simplest of these cquations are
n
a1 v' H — r= l —_—
the recursion relations ne, = 2( 1) " pe,., ., nh, = 21), b, Z ~eh_, =0,
r=} r=0
which we interpret in Scction 2.1. We also interpret lhc cquatlom h, = 2”’1 in Section
Axn
34and ¢, = Z/’A in Scction 3.3, In gencral, most ol the equations take the form
Asn
= ZM(I), a), 4, where M(b,a), , is the transition matrix from the a,'s to the b, 's.
Hn
Combinatorial interpretations exist for the entries of thesc transition matrices, and we

review them in Section 1.2.
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The Jacobi-Trudi identity s, = dct(hﬂ‘_iﬂ) , m={(A), where h; =0

15i, j<m
whenever j <0, is of special importance in Chapter 4, which is devoted to evaluating the
Schur functions s, (&,,...,&,). Theorem 4.1.1 is inspired by an algebraic proof of the
Jacobi-Trudi identity. Theorem 4.3.1 may be understood as a combinatorial

interpretation of the Jacobi-Trudi identity, where we write it as the transition matrix
equation §, = ZM(A‘,/:)M h, that expresses s, in terms of the A,'s.

The sy:;:ll;wtric functions f,(&,.....Ey) and m,(&,,...,E,) are evaluated in chapter
3 using the equations f, = EM(f,p)M Py and m; = zM(m,p)Mp“ , and it seems that |
a similar approach can worllin—fgr the Schur functions s, I(LZ‘:CN) With regard to our
techniques, we find that there are special advantages to expressing symmetric functions in
terms of the basis {1)1 }b“ of power symmetric functions.

The statements and methods of this thesis do not depend on anything from the
theory of symmetric functions other than what we have mentioned above. Nor do they
depend on any concepts or results from the representation theory of the symmetric group
S, with which the theory of symmetric functions is usually associated. This having been
said, it is true that some of our most effective approaches make use of equations
b, = EM(I),p)W P, in which the transition matrix takes on the form

H-n 1

M(l),I’)M =— ZBA (0). Here U, is the set of permutations o € S, with cycle
‘ ()\;U’A

structure yt =1 and B* (o) is the trace of a representation of the symmetric group, or a
linear combination of such traces. Our constructions use the permutations o € S, to add
labels and use the factor 71' to remove these labels. They suggest that the functions
B*(0) are at work, albeit i;nplicitly, and in fairness to them we devote some pages of this
section to remarks on their role in representation theory. We also point them out in
various places througliout this thesis.

Two permutations T, o € Sy belong to the same conjugacy class if and only if

there exists a g € S, such that 7= g 'og. In particular, T and o belong to the same
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conjugacy class if and only if they have the same cycle structure. ‘This means that there is

exactly one conjugacy class of S, for each partition A > n. The size of the conjugacy

class associated with the cycle structure A4 is C, = n/(ni"" -ml.!) where my,...,n, are
1<i<n

the integers for which A = n™.-.2"1™. -

Let B:S, =7Z be a class function, that is, a function that is constant on conjugacy
classes. We writc either B(cd) or B(4) to indicate the value of B ata permutation ¢
with cycle structure A. Define class functions Z* such that Z*(1)=1and Z*(p)=0
forall g # A. Then any class function B can be thouglit of as a lincar combination
> B(A)Z*, and with this in mind we Iet R, be the module over Z whosc elements are
Axn

these linear combinations.

The Frobenius characteristic map ch:R, — A is defined by

ch(B) = EB C,p,. We make frequent mention oflhi% formula, especially in
l*u
Chapter 3 but we usually write it in the form ch(B) = ZB(G D, » where the index o
” Ues,

of p, is understood as the partition which gives the cycle structurc of o. This is
compatible with combinatorial constructions in which we think of a permutation o as
providing labels o(1), o(2),...,0(n). The Frobenius characteristic map serves as a key to
understanding the marriage between the theory of symmetric functions and the
representation theory of the symmetric group S, .

The Frobenius characteristic map is an isomorphism, and we may spcak of its

inverse, ch™ . Therefore the functions {7(’1 }A for which ch(x‘): s, arc a basis for R .

-
They are the irreducible characters of S, and of central importance to the representation
theory of S.. A representation p of S, of degree d is a group homomorphism

p:S, = GL,(C) which sends cach permutation o€ S, to a d X d matrix p(o) with
complex cntrics, and p(o)p(7) = p(oT) is the usual matrix multiplication. For example,

the homomorphism y,, which maps a pcrmutation o € S, into the associated 3x3

permutation matrix is a representation of degrec 3. A character of S, is the tracc of a
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representation of S,. A reducible representation is one that is isomorphic to a direct
product of representations. The representation ., is reducible. An irreducible
representation is one that is not reducible. Finally, an irreducible character is the trace of
an irreducible representation.

We want to touch on the role of irreducible characters in representation theory, if
only so as to make plausible the significance of the Schur functions s, = ch( x‘) and the
transition matrix M(s,p), , = %Cy 2*(u). With this in mind, let us summarize some of
the achievements of representation theory as they apply to S, [Se]. Say that two
representations p and p” are equivalent if p(o)=Dp’(c)D™ for some D e GL,(C) and
forall o eS,, thatis, they are equivalent if and only if they differ by a change in
coordinates. The number of irreducible representations of S,, up to equivalence, equals

the number of conjugacy classes of S , which as we have observed equals the number of

partitions of n. The trace y* of any such representation {A} is constant on conjugacy
classes and has integer values, so that ¥* € R, for all A > n. If two representations have
the same trace, then they are equivalent. In fact, a representation is a direct sum
p(0)=p,(0)®---®p, (o) if and only if the corresponding character is a sum

tr(p(0)) = tr(p,(0))+-+tr(p,(0)). This means, in particular, that a class function

BeR, is acharacter B(o) = tr(p(0)) of S, if and only if it is a linear combination

B(0) =Y m,x* (o) where {x‘ }AH are the irreducible characters x*(0) = tr({A}(0)) of
S, {{A /}IKH are the irreducible representations of §,, and the multiplicities m, are the
nonnegative integers which indicate the number of copies of {A} in the direct product
p= AEP,.{A}MA'

It is possible to give an explicit description of the representations {{A}} For

Asn"
example, the representations of S, of degree one are the trivial representation
{n}(o)=(1) and the alternating representation {1" }( 0) =(sgn(o)). In fact, in Section 4.4

we provide explicit descriptions for the representations of GL., (C) from Littlewood's [L]



15

book, and specializing these gives Young's natural representations of S . There is also a
combinatorial interpretation of y*(it) = L!M(s, P),, in terms of rim hook tableaux
which we state in Section 1.2 and usc in Sgction 4.3, Howecver, in order to make the
representation theory of §, niore concrete, we present an example of the decomposition
of a representation of S into irreducible representations.

Let w,, be the representation of S, which maps o € 5, into the 3 X3 permutation

matrix (5 . If we observe how these matrices act on vectors (x,0,0), ((J, y,()),

“(‘)1)1si,js3
(0,0,z2), then we find that y,, Icaves fixed Lhe line x =y =z. We imaginc (his linc as

passing down our line of sight into the coordinate system shown below.

We therefore consider the equivalent representation Dy, (o)D™ which is gotten by a
change in the coordinate system (x,0,0) = (x,x,x), (0,,0) = (y,—»,0),

(0,0,2z) — (0,z,—z), so that D is the matrix

11 1 12 1
D=|1 -1 0 D=1 -1 1
0 1 -l U -1 -2
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o=(123)

o =(132)

o =(12)3)

(13)2)

o

o = (1)(23)

o =(1)(2)(3)

[am—y

A=3
1Y(0 1 0)(1 2
0 [O 0 1)1 -1
=11 0 0)\1 -1
1Y(0 0 1)1 2
0/1T 0 0f]1 -1
-1)l0 1t 0)1 -1
A =21
1Y(0 1 0)(1 2
0|1 0 O0/f)J1 -1
-1){0 0 1)1 -1
IY(0 O 1Y (1 2
O (o 1 01 -1
-1){1 0 01 -1
1Y(1 0 0)f1 2
00 0 T]f1 -1
-0 1 0)0 -1
A=111
YT O 031 2
00 1 01 =1
-1)\0 0 1)1 -1

Figure 1: The decomposition of a representation of S;.

Let y,, signify the familiar representation of S; by 3 x 3 permutation matrices.
We illustrate the decomposition {3}(c) x {21}(o) by calculating D,, (o)D" for all
o €S,, with D chosen as above. Moreover, we express x*'(0) = tr({21}(0)) in terms
of rim hook tableaux, as described in Section 1.2.
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In Figure 1 we present the values of Dy, (o)D" forall o eS,. The representation
is isomorphic to the dircct product {3} x{21}, where {3} is the trivial representation of
Sy, and {21} is an irreducible representation of Sy of degree two. Note that 1"

- : I . 3 _ 73 21 111 21 _ 3 111
constant on conjugacy classes. The characters ¥ =Z"+Z27 +2Z", y" =-2"+14",
M =2 -7 + 7" constitute a basis of R,.

Forall F, G e R, define the inner product (F,G), =— Zf . With
(reS

respect to this inner product the irreducible characters are OI'[IIOIIOI'llldl, that is

(XA,X‘I)R" = §,,. In contrast, the class functions {Z‘}h“, which are a "natural” basis for

3
"l

R, arc merely orthogonal, so that (ZA ,Z") = %531" The fact that the inner product
n!
on R docs not coincide with the basis {Z‘ }A means that the Z-modunle R, has two
~n
"natural” bases. The bases { xt }A and {Z* }A in R, arc rclated to cach other in the
~n ~n
C . ,
same way as are the bases {.VA }A and {—i'pl in Ay, What makes this all the
~n
n: Arn

more true is that the Frobenius characteristic map is an isometry, so that
(ch(F),ch(G))=(F,G), forall F, GeR,.

Having described how A’ and R, are related by the Frobenius characteristic

. ; ne S eix hases o I ] nl

map, let us turn back to the six bascs {cﬁ }b", {ml}l}”, W2 (1 U },1>—:|’ {h“b_",
{fl }b” , that are the subject of this thesis, and for each basis provide a reason for its
significance.

The elementary symmetric [unctions {el }A are familiar even Lo people with no

bl
special interest in the theory of symmetric functions. This is because the cocflicients of
any polynomial are functions (—1)" e”(x,,...,xN) of its roots x,,...,x,, which is to say that
(t—x)(t=x,)(1=x " (= 1) ¢,(x,5., Xy ). From the point of view of
\ ) NE e Xy ). From the point of view o
0<igN

combinatorics, this means that en(xl,...,,\fN) is a generating function lor subsets of 1,...,N
of size n. As we shall see, this interpretation changes when ¢,(x....,x ) is evaluated at

the cigenvalues &,...,Ey ol an N XN matrix A, so that (',,(é:l ..... éN) generales terms

with both positive and negative sign. This new context does not diminish the importance
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of the clementary symmeetric functions, as they give the coefTicients of the characteristic
polynomial det(rt—A)= [T(r &)= D" (=1)e,(&..... &) of the matrix A.
1<isN 08N

The monomial symmetric functions {"’1 _}b" arc the "natural” coordinate system
for A'y. The basis {Amﬂ }A:_ . is the one which most single-mindedly expresses the
symmetry in the variables v,...,.x,. According to our definition, ni, (xl,...,xN)

Zx (1) “(2 3f~ where the summation takes place over all distinct permutations o
of Z,l >..2 A,. In other words, m, (x,,...,x, ) consists of the term x;"x}*---xp* and no
other terms except those implied by the fact that mi, is a symmetric function. This last
description is very helpful, as we can see if we multiply together e, (xl,xQ,x3)

= XX, + 3,0+ X0 and e, (x,,x,,X;) = X, + x, + x;. The product e, (x,,x,,x,)
=¢,(x,,%,,1, )¢, (x,,x,,.;) contains two copies of the term x;x,, and three of the term
X,X,X;, and so we quickly conclude that ¢,, = ¢,e, = 2ny,, + 3n1,,,, where
ny, (X, 2,5, ) = X200, 4 060+ XX+ X0 + X5+ xax, and (00,0, X)) = XXX,

The Schur functions {.s'l } ..., are most readily introduced in the context of the
ring of antisymmetric functions. A function f(x, ,...,xN) is antisymmetric if
f(xﬁ(l),...,xom)= sgn(0)f(,....xy ) forall oe Sy, If ¢ xf*xd? - xjv is a term in a
antisymmetric function f{x,,...,.xy) with g, g1, 2...2 i1, and ¢, # 0, then it must be
that u, > pt, >...> ,, because otherwise there exists a o € S, such that sgn(o)=—1 and

- By W L -1 N adiceti ) N 1 — 7
€ X = e X X contradlumg ¢, #0. Let &> (2) with §, =N —j for

. . L i L+8, A, +8 Ay+8,
all j, 1< j<N,and let d,, 5(x,...0y) = D sun(0)x 0 x gty x i
oeSy
A;+8; . . . .
= det(x #*4 ) . We say that {a/H 5}1‘ are the monomial antisymmetric functions of
1<i,j<N .

degree n +(';’ ) They form a basis for the Z-module Ay of antisymmetric functions in
variables x,,...,x, of degree )z+(';'). Observe that setting x; = .x; for any f e Ay gives
f=~f =0, which shows that x, —x, divides f. Therefore the product H(x,, —xj)
divides any f e Ay. In particular, H(.\‘i —,\‘j) divides az(x;,...,xy) :(]lz;(jt?’)m e

I<i<jsN
These two polynomials have the same degree and a check of the coefficients shows that



they are equal. We define the Schur functions {“',1 }1»,. to be the quoticnts s, (,\',....,d\tN) =

dy,s (xl,...,xN )/(lé(xl,...,xN). The Schur functions are quoticnts of two antisymmeltric
polynomials and therefore must be symmetric functions. In fact, they form a basis of A’
because {aﬂms }AH is a basis of Ay. The Schur functions may be thought of as the basis
of A’y which arises from the "natural” basis of Ay. |M, 24|

The power symimetric functions { P, }/b _may be thought of as being given by
P, = ch(—c'i Z‘), where {Z‘}l is the "natural” basis of R, as we have alrcady scen.

A -n

The homogeneous symmetric functions {/zx }1\_ becoine especially significant
when they are identificd with the characters {’h }h_" of §, lor which 1, = ch"(/zl).
These characters are the traces of some of the most important representations of S . Let
S, be a subgroup of S, that is isomorphic to the group S, xS, X”'XSM(;)’ Then 7, is
the trace of the representation y, of S, that is induced from the trivial representation of
S,. We provide several examples of this induction, starting with A =n-1,1. Let §,_ |
be the subgroup of S, whose elements permute the letters 2,...,n but keep 1 fixed. Then

(- In particular, S,

I

. is a disjoint union of

, nl n\ __ [ \
S, has [s,|s,-1.| = GO (”_l) =n cosetsof §,_,

the cosets S,y ;,(12)S,_1, (13)S,-1 oo (101)S,_, ,, where, for exaniple, (12)S,_,, =
{g e Sn|g =(12)hhe S”_H}. Note that g[(lt’)S“__l'l] = [(]j)S“_l_l] if and only if
(1))g(li)e S, if and only if g maps j to i. Therefore ¢ may be understood to act on
the cosets as an n X n permutation matrix (50(1,),,)&]'5”, and this is the representation
W, of §, of which 7,_,, is the trace. 1t is the usual representation of S, in terms of
1 X n permutation matrices, with one matrix for each of the n! elements of S,. Its trace
1,11 (0) counts the number of letters i for which o(i) =1.

If A =1", then S, has a single clement, the identity, and there is onc coset of S
for each clement of S,. Note that gl_GS]"] =[rSl":| if and only if ¢ = to™". Thereforc the
induced representation ¥/, is that which maps g into the !X n! pcrmutation matrix

(5ga ,) It is the regular representation and associates each clement of S, with a
"/ o,1es, :
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table that records the effect of its multiplication on the clements of S,. Its trace 717, (g)
counts the number of permutations for which g7 = 7, and therefore 17, (g)=0 for g #id,
and 1,(id)=nl. If 1 =n,then S, isall of S,, and there is but one coset. Therefore y,
is the trivial representation, and 1,(g)=1.

The several examples that we have considered are very important, and it can be
argued that the characters { n, }b" are traces of representations which in practice arise
more frequently and naturally than do the irreducible representations. The multiplicities
of {x‘ }AM in 77, have an interpretation in terms of column strict tableaux of shape 1
and type 4, which are defined in Section 1.2. From them we can tell, for example, that
N, =x*' +x°, where ,, is the representation of S, which we portray in Figure 1.

The forgotten symmetric {functions {fa }“" are given by f, = a)(ml), and only
recently received a combinatorial interpretation, due to Egecioglu and Remmel [ER2].
Ostensibly they are a "missing” basis that is included so as to make the picture complete.
However, in evaluating different symmetric functions at the eigenvalues £,...,&, of an
N X N matrix A, we argue in the conclusion of this thesis that it is the forgotten
symmetric functions which have the most elegant and satisfying combinatorial
interpretation.

We conclude this section by deriving Egecioglu and Remmel's interpretation of
I (xl,...,.rN) in terms of brick tabloids. Recall the Jacobi-Trudi identity
s, = det(hal__‘.,*j)
e, = det(hl_,.+ j)

, where /i, =0 whenever j<0. In the special case 4 =1", we have

1<i,j€m

i e’ A composition of » is a sequence O, Oy Oy of positive

integers which add up to n. The terms generated by (Iet(hl_,._* j) _correspond to the

<i,j

compositions of 1, and each such term has weight A, A, -5 > a8 illustrated by the

(I{(

example below.



21

o hy hy by kg

| I hy hy I I | | l ]
0O 1 I h b 1 '

0 0 1 /y h

0 0 0 1 n

We say that the n squares drawn above belong to bricks of length «;, 1< j<((c). The

fact that e, = Hel.- means that ¢, is a generating function for scquences of compositions
;>0
of 4,,...,4,, where each brick of length Q; has weight &

and cach term has sign

1 .
n (ll

(—1)““). Such objects may be drawn as brick tabloids, as illustrated below, and defined

in Section 1.2.

h hy hy ko

11 h Z hy I, = :l:

0O L hy | M Wl(u hooh OO0

0 0 1 A4 WU M M1 nom, |
00 0o t a)0 U nJlo 1 g g s el s

Alternatively, the coefficient of 4, in ¢, is given by sgn(u)B, ,, where B, ; is the
number of brick tabloids with rows of length 4, > A, 2...2 A, and for which the partition

u records the lengths of the bricks. Recall that (ml,lz“> = §,,,, and note that

fu= Z( Fiohy )ml and e, = 2((6/1L Jy, )/1“ . The observation ( fl,,lzl> = ((u(f“ ),a)(hﬂL )>
= (e,jr?zl) = (el,m“> = sgn(/,tl)lb:‘l provides us with an interpretation of /'ﬂ(,\fl,...,xN) in
terms of brick tabloids. In Chapter 3 we find a satisfying generalization of this
interpretation, and in the conclusion of this thesis we speculate as to whether there is a

context in which the forgotten symmetric functions {fl } 1., may be found to be a

"natural” basis.
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SECTION 1.2 TABLEAUX AND TABLOIDS

Any two bases {b/1 }»" and {(l“ }‘M of the symmetric functions can be related by
the transition matrix M(b,a)m from the a,'s to the b, s, so that b, = ZM(b,a)M a,
forall A > n. Thirty nontrivial transition matrices relate the six bases #{2 }»,.’ {m,1 }b_",
{Sa},b_,,’ {p/l }a-,,.’ {h/1 };.>-,.’ {f/1 }/1»,.’ that we introduced in the previous section. We use
them in Chapter 3 of this thesis to express f, (&,,....&y) and m, (&,,...,£, ) in terms of
P&, €y ), and we use them in Chapter 4 of this thesis to express s, (&,...,&y ) in
terms of /, (&,,...,&y). Our methods depend on having combinatorial means of
expressing the entries of the transition matrices M(f, p) o M(m, p)w, M(s,h)m, as
well as M(f,m)“‘, M(s,m)l_“, M(p,s)w. Such entries are indexed by pairs of
partitions, as are the combinatorial objects used to express them. In this section we
describe how we use shapes to depict partitions. We then define various combinatorial
objects indexed by pairs of partitions, namely, brick tabloids, weighted brick tabloids,
ordered brick tabloids, column strict tableaux, rim hook tableaux, special rim hook
tabloids. We put the brick tabloids to use in Chapter 3, and the others in Chapter 4.

Given a partition A > n, we adhere to the French convention of depicting it as a
set of n squares with ¢(4) rows, for which the lengths of the rows are A, 24, 2.2 1,
from bottom to top, and the leftmost square in each row is in the same column. We refer
to such a set as the Ferrers diagram of shape A, or simply, the shape A . For example,

below, on the left, is the shape 322.
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We orient ourselves in the shape A with the aid of the dircctions of the compass: north
(up), south (down), east (right), west (left). We endow the squares of the shape 4 with a

coordinate system £ X N, east by north, as shown below.

(]’3)ExN 2’3)

ExN

1’ 2)n<~ ’2’2)5“« 3’2)ﬁxN

(LD (2,1 |3, 1),

We may also think of the shape A as cmbedded in a plane of squares and use the L XN
coordinate system to reler to squares outside of the shape 4.

The tableaux and tabloids that we define in this section are indexed by pairs of
partitions. One of these gives the shape of the tableau or tabloid. ‘The other dictates the
sizes of disjoint subscts that make up the shape, and is called the ¢ype. i some
constructions we imagine these subsets as being laid down ina certain order. An order
o €S, is specified, so that in cach of the objects that results, il the type s vi-n, n<N,
then forall i, I<i< N, the ith subset has length v, . With this in mind, we define a
weak composition V = (Vl,...,VN) of 1 10 be a sequence ol nonnegative integers such that
Vit+..+V, =n. Wewritc V- vo (VI,....VN) — v if the positive integers of the
partition v n arc those of V. In particular, m, (x,,....xy )= Y Xy

Given shapes A = (n+x), p>n, with A, =y, 20 l'or(;:ll'lw;'/,n’)l_’; i <n,the skew
shape A — p is the set of squares (E,N),,, for which (£,N), , €A and (E,N), , & L.
For example, the skew shape 441~ 31 is the differcnce ol the shape 441 and the shape

31 and is drawn as below.
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The ith row of a shape A or a skew shape A — 1 is the set of its squares (E,N),,, for
which N =i. The jth column of a shape A or a skew shape A — u is the set of its
squares (E,N),,, for which E = j.

Two squares of the form (i, /), v» (i +1,/)n OF (i27) on» (67 + 1) are said to
be adjacent. A set of squares Z is connected if given any two squares A,B € E there
exists a sequence of squares {CI,C:,,...,C,} c E suchthat A=C, and B=C, and C; is
adjacent to C,,, forall 0 <i<r. A brick of length r is a connected set
{(i,j+ k)t k< r}, with i, j€Z and is said to start at (i + 1, /).y and end at
(i,j+71),.y- Wenow define three kinds of brick tabloids introduced by Egecioglu and
Remmel [ER2]. They play a central role in Chapter 3.

A brick tabloid Y, , of shape p and type v is an object that consists of a shape
p > nand a decomposition of it as a disjoint union of bricks of size v,,..., V. For

example, the brick tabloids of shape 332 and type 3221 are:

— —— ——

— 1 [ | | |

——| [==]o] [o[==

O

——
——|O
E__I_I_I
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As mentioned in Section 1.1, f, can be defined in terms of brick tabloids as
", =sgn( V)ZBWm# , where B, , is the number of brick tabloids of shape y and type
V. o
Fix a weak composition (Vl,..., VN) — V. Suppose that Y, is a brick tabloid of
shape i and type v. Assign to each brick of ¥, , one of the letters L,...,£(v) so that for
all i, 1<i<{(V), the letter [ is assigned to a brick of length V. Ifineachrowof ¥, ,

the bricks are ordered so that the letters increase from west to east, then we say that it is

an ordered brick tabloid Y, , of shape u and type v. For example, if the weak

composition is 2231, then the ordered brick tabloids of shape 332 and type 3221 are:

—D —" —r —=
— 21| @ | K1 1| [ | K1
C—=

—p|e| |[=—=| ||

Ordered brick tabloids give a combinatorial interpretation of ch™ (h#)( v)=0, ,, where
O, , is the number of such tabloids of shape y and type v with bricks of length
Vi5s...,Vy. Ours is a slight modification of the original definition that Egecioglu and
Remmel give for ordered brick tabloids. They assume that V|, = v,,...,V,, = v,,, but we
note that any fixed (V},...,V,) = Vv yields the same number O, , of tabloids. This
property may seem uninteresting with regard to ordered brick tabloids, but in chapter 4
we derive from it the analogous but not obvious property for rim hook tableaux.

Again, suppose that Y, , is a brick tabloid of shape u and type v. Within each
row distinguish a square in the rightmost brick by placing an asterisk inside of it. The
resulting object is a weighted brick tabloid Y, , of shape u and type v. For example,

the weighted brick tabloids of shape 311 and type 2111 are




ES

£8 0O | E==H EIEZFI___I

Egecioglu and Remmel define weighted brick tabloids as brick tabloids that come with a
fp)

weight J & where b; is the number of squares in the rightmost brick of the ith row.
i=]

Our definition is equivalent to theirs: our asterisks play the role of their weights. In

Chapter 3 we make use of the fact that ch™(f, }(1) = sgn(V)W, ., where W, is the
number of weighted brick tabloids of shupe jt and type v. Most of Section 3.2 is
devoted to further discussion of these tabloids because they play a prominent role in our
proofs of Theorems 3.3.1 and 3.4.1,

Just as the brick tabloids are central to our work in Chapter 3, so are column strict
tableaux, rim hook tableaux, and special rim hook tabloids in Chapter 4. We review the
construction of each of the latter three objects. In what follows, let
Xv= (,LL(”,,U(Z’,...,;I.(N)) be an object that consists of a sequence of shapes
G=p" cp cp™ cc ™ = osuch that for all i, 1<i< N, the skew shape
p — D has v, squares, and V- v,

X v is a column strict tableai of shape 1 and type v if forall i, 1<i<N, each
square of 1) — " is the northernmost square of a column of ', If u® —p®" has
r squares, then it is called a horizontal r-strip. In drawing a column sirict tableau the
squares of the skew shapes 11t — 1™ ure filled with the letter i. For example, the

column strict tableaux of shape 321 and type 2211 are:
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X,y is a standard tableaw if it is a column strict tableau and v =1".

Alternatively, a column strict tableau of shape 2 may be defined as a shape u
with a letter assigned to cach square so that the letters increase strictly (<) as one moves
north along any column whercas the Ietters increase weakly (<) as one moves east along
any row. A column strict tableau is said to have content 12"+ N" if for all §,
1<i<N,ithas V, occurrences of the letter i, and is said to have type v, where V — v.
A standard tableau has type v =1", and therefore its letters increase strictly, both as one
moves north, and as one moves east.

If we fix a weak composition V — v, and let C; be the set of column strict

tableaux X, , then the Kostka matrix K, , = M(s,m), , has the combinatorial

interpretation K, | = zl . Therefore the Schur function has the combinatorial
X, vell v v
interpretation .s'“(xl,...,xN = Z_xrl‘--',\'N”. One of the two main result of this thesis is

X,

Theorem 4.3.1, which generalizes this interpretation by considering what happens when

wECH, Vv

X5, Xy are the eigenvalues 61,...,<§N of an N X N matrix A. This gencralization
involves rim hook tableaux, which we now define.

A northeasterly line is a set ol squares { (i + k., k), |k €7}, i € Z, as illustrated
below, on the Ieft. A set of squares R is a riin ook if it is connected and consists of at

most one square per northeasterly line, as illustrated below, on the right.
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V4

The start of the rim hook R is its northwesternmost square, and the end of R is its

southeasternmost square. We may also use these two words as verbs, and therefore prefer
them to the words 'tail' and 'head’, which appear in the literature. The length of R is the
total number of its squares. If a skew shape 1t — i is a rim hook, then we say that it is an
inner rim hook of i and an outer rim hook of /i.

The northeasterly lines reveal much about the properties of rim hooks, and in
Section 4.2 we introduce a second coordinate system that makes these properties
apparent. But it is also helpful to keep in mind three remarks that elaborate on the fact
that rim hooks are connected sets. First, if a rim hook R starts on one northeasterly line
and ends on another, then every northeasterly line in between contains exactly one square
of R. Second, if a square C belongs to a rim hook R, then either R ends at C, R steps
east from C, or R steps south from C. Third, disjoint rim hooks cannot cross over each
other.

As before, let X“'V = (u(’),u(z),...,u(")) be an object that consists of a sequence
of shapes @=p cpV cp® c...c up™ =i such that for all i, 1<i < N, the skew
shape #” — 11" has V, squares, and (V,,...,Vy) = v. Then X, is a rim hook tableau

of shape f and type v if forall i, 1<i<N, p® — " is a rim hook. In drawing a rim
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hook tableau the squares of the skew shape p') — 1™ are filled with the letter i. For

example, the rim hook tableaux of shape 332 and type 332 are:

The sign of a rim hook tableau is an important factor when these tableaux are used in
counting. The sign of a rim hook that starts at (E,N),,, and ends at (E",N"),_, is
(—I)N_N'. The sign of a rim hook tableau is the product of the signs of its rim hooks. In
the example above, the rim hook tableaux, from left to right, have sign (—=1)"***',
(_1)1+1+1’ (_1)1+1+0, and (_1)0+0+o'

If a rim hook is a subset of u, then it is a special rim hook if it starts in the
leftmost column of ft. A rim hook tableau of shape y and type v is a special rim hook
tabloid X, , of shape y and type v if for all i, 1<i< N, its rim hook g —pu@™ is
either empty or starts at (1,i),,,. Indrawing a special rim hook tabloid the skew shapes
p® — pbY are indicated by solid lines. For example, the special rim hook tabloids of

shape 3221 and type 431 are:
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The sign of a special rim hook tabloid is defined to be the product of the signs of its rim

hooks.

Given a shape p, the conjugate shape i’ is the set of squares for which
(1,4) gy € 1" if and only if (j,i),,, € . This is an important concept in working with
the Schur functions because a)(s“) =Sy but our only use for it will be the identity

= ’ < H : o . .
Sy det(eﬂl,_i+ j)lsi ey >n, n< N, which is the dual of the Jacobi-Trudi identity

s, = det(h#,_,.+ j)ls‘ <~ and follows from the fact that w(k,) =¢,. 1n Chapter 4 the Jacobi-
i Ij<

Trudi identity also takes the form s, = ZK ;_‘#hv , where the set S, , of special rim hook

ven

tabloids of shape 1 and type v is used to calculate K ;"” = ngn(XW). Section 4.2 is

X“_VES”.V

especially devoted to the study of the relation between special rim hook tabloids and rim

hook tableaux.
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SECTION 1.3 WALKALONGS

If we evaluate a symmetric function b(xl,...,xN) at the cigenvalues &,,...,6 of an
N x N matrix A, then 1)(51,...,§N) can be expressed as a polynomial in the edges of A.
Our purpose in this thesis is to provide a description for the terms of such a polynomial as
weights of combinatorial objects gencrated by 1)(51,...,§N). For example, from the

N N
equation Y 1°¢,(&,,...6y) = [ T(1+1&) = det(1+:A) we know that the clementary
r=0 i=1
symmetric function er(él,...,ﬁ,\,) is the sum of the determinants of the r X r principal
minors of A. If r=4 and N =8, then ¢,(&,,..., &) has a term ay,ay,d,,a,, which we

may think of as a weight W, (s) associated with the following set s of disjoint cycles.

—~(4)
o
(3)
The fact that every symmetric function & of degree n has an expansion b = Z“CAe/1L in
A
terms of the elementary synunetric functions means that cach term a; @, ; - '”i,:, of
1)(51,...,§N) may be thought of as a weight associated with a multiset of cycles. The
purpose of this section is to define the combinatorial objects that we will have cause to
associate with a term 4;; a; ; ---a, ; . These are objects which can be constructed out of
cycles, among them closed walks, circular walks, and even Lyndon words. One obstacle
that we try to overcome is the decidedly linear nature of mathematical notation. We
counter this prejudice by introducing the walkalong, which allows us to define a variety
of combinatorial objects in a context that keeps us aware of the circular nature that they

share in common.
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A walkalong is a structure very much like a cycle except that the letters involved

may appear not only once, but several times, as in the example below.

The structure shown above very much resembles a closed walk, except that there is no
distinguished vertex at which the walk would start and end. Indeed, at times we want to
concentrate on this aspect, and we speak of such a structure as a circular walk. However,
at other times we want to refer to various combinatorial objects with a name that reminds
us of what they have in common. We want to make use of operations that apply to all
such objects, but we also want to formalize concepts that will allow us to generate new
combinatorial objects. For all of these reasons we introduce the walkalong.

If X= {x,,xz,x3,...} is a set, then we say that x,,x,,X,,... are its elements. A
multiset is a set in which the same element may appear several times. For example, the
prime factors of 28 are given by the multiset {2,2,7}. More formally, a multiset
Y ={y.y5 5.} isaset {y,7,,;,...} together with an equivalence relation on its
elements. Any equivalence relation establishes equivalence classes, for example, {2,2},
{7}. A letter is a representative of an equivalence class. Therefore a letter may refer to
an element or to an equivalence class, and which is actually meant is usually made clear
by the context.

Let {x,-l ,x,.z,...,x,.r} be a set of r elements on which we do not define a total order.
Let o be the bijection defined by cr(x,.I ) =X, G(xiz) = X yenes G(x,.r ) =x,. Givenaset R
of letters, say that two functions F:{;ril,.ril,...,x,.r} — R and F’:{x,.l,x,.z,...,x,.r} — R are

equivalent if and only if F’(G" (xii)) =F (x,,

J

.) for some k, 1<k <r, and forall j,
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1< j<r. Let C(R) be the set of cquivalence classes on the functions

1’7:{)@l ,xl.z,...,x,.,} — R. Then a walkalong on R with a total of r places is an element of
C(R). Less formally, a walkalong on R of length 7 is a way of filling the places of a
cycle of length r with letters from the set R. In drawing a walkalong w we fix a
representative w € C(R) and we draw the letters ¥ (x,.l ),...,F(x,.,) in a circle so that F (x,.l)
always appears clockwise of F (x,.,), and in general, F(xl.]_”) always appears clockwise

ufF(x,._), as in the example below, where R ={1,2,3} and r =06.

The resulting drawings are in onec-to-one correspondence with the walkalongs from which
they arise. We think of each letter as occurring at a place in the walkalong, which we
draw O We emphasize that there is no first or last place in the walkalong.

Given a walkalong of length r, specify a place Q within it. We then refer to the
other places of the walkalong as Q+1,0+2,...,0+r—1 as we go around clockwise,
with @Q+i+r=Q+1 forall i €Z. If places R,,...,R, of a walkalong appcar in that order
as we go around clockwise, then we define the circular distances between them to be the
lengths 7,,...,r,, which are the smallest positive integers such that forall j, [ <j<k—1,
R, +r; =R, ,and R, +r, = R. The concept of circular distance is important in our
combinatorial interpretation of fl(é:l,...,éf,v), where we apply it to a multiset of

walkalongs, such as the one below.
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In the example above the circular distances between Q, R, S, W are given by the
partition 3221.

Given a walkalong w on R of length r >0, distinguish a place Q. Fix an RXR
matrix A = ((lij)i,jel{ with entries from a commutative ring with identity, and for all i,
0<i<r,let s(Q+1i) be the letter at the place Q+i. We define the weight W, (w) to be
W, (w)= H(Ix(Q“)J(QHH) and the sign sgn(w) to be (—1)""'. For example, if w is the

0<i<r-1

walkalong shown below, then W , (w) = a,,a,,a,,a,, and sgn(w) = (1),

k
If s=(w,...,w, ) is a sequence of walkalongs, then we define W, (s) =] [ W, (w;) and
i=l
sgn(s)= Hbgn w . Likewise, if m = (wl, .,w, ) is a multiset of walkalongs, then we
define W (m HW w and sgn(m) Hsgn w . For example, the weight of the
i=l

multiset of walkalongs shown below

‘e 4 4 , e 1414342
is aa3,a,,a,,a,,, and the sign is (=1) =-1.
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Given a walkalong w on R of length r >0, we say that each place Q in w isa
directed place, by which we emphasize that there is a single place Q +1 to which Q is
directed, and a single place @ —1 which is directed to Q. In contrast, we establish a
convention that a walkalong w on R of length zero is an undirected place with an
associated letter i € R, which we draw @ and for which we define W, (w)=1 and
sgn(w) =1. This distinction plays a role in our proof of Theorem 2.3.1.

Structures like walkalongs arise often in the study of the combinatorics of a
matrix A, as in Zeilberger's [Z] paper "A combinatorial approach to matrix algebra”, and
also the last chapter of Brualdi and Ryser's [BR] book Combinatorial Matrix Theory. A
common technique that arises is one that we call redirecting places. Let Q # W be two
places in a multiset m of walkalongs such that the letter at Q is the letter at W. Then we

may speak of redirecting Q to W+1and W to Q +1, as in the two examples below.

0 o+1

(3)
hO
Q W 0 0
3 (3) 3
o+l Wl (3)
(2) W

If Q and W are in the same walkalong, then redirecting places in this way creates one
walkalong from two, and if Q and W are in different walkalongs, then it creates two

walkalongs from one. A consequence of this is the following lemma.
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LEMMA 1.3.1 Fix A= ((z,.j) . Let Q # W be two places in a multiset m of

ije
walkalongs on R such that the letter at Q is the letter at W . Let m be the multiset of
walkalongs on R that arises from m upon redirecting Q to W+1land W to Q+1.

Then W , (i) =W ,(m) and sgn(m) = —sgn(m).

We use this lemma in various involutions, especially in Chapter 2, because if the same
places O and W are redirected a second time, then we get back the original multiset m.
Another important technique arises in working with a matrix —A. If we take
account of the sign of the entries of —A, then given a walkalong w of length r, we have
that sgn(w)W_, (w)=(=1)"'(~1) W ,(w) =~ W, (w). Therefore we have the following

lemma.

LEMMA 132  Fir A=(q;)

o Letwbea walkalong on R and let m be a
(1]

multiset of walkalongs on R. Then sgn({w}om)W_,({w}um)=

sgn(m)sgn(w)W_, (m)W , (w).

In some constructions we distinguish a unique place within a walkalong to serve
as its origin. We draw such a place as @ We say that a walkalong with an origin is a
closed walk, and that a walkalong without an origin is a circular walk. Below we exhibit

an example of each.
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The existence of an origin makes it straightforward to depict the walkalong in linear
fashion as a word by listing the letters at its places from lelt to right, starting with the
letter at the origin. In general, a word is a sequence of letters from et to right, such as
233124.

In this thesis we define a Lyndon word to be a circular walk without rotational

symmetry, as in the example below.

We may compare our definition of Lyndon word with the traditional one. Supposc that
there is a total order on the elements of R ={r,,...,r }, so that r, <...<r,. Let R* be the
semigroup of all words r;r, ---r;, s 21, 1<4,0,,...,0; < K, with the concatenation product

(ré"iz'”"i,)(rj."jz""‘j,) = (/',.11',2---/'ill'jll'jz-~-l'j’). The total order on R is extended to the

lexicographic order on R™ by declaring that for all r,r, --r,, r.r. ---r. € R we write
[R5 s I h Je

roreeer, <roroeeers ifand only ifeither r, =7, forall &, 1Sk <y, and s <t, or there
3 A h h I Iy I

i

exists a u<s,t such that r, =r; forall k, Isk=u,and r; <r; . Then rir--or; isa

Lyndon word if and only if r;r; ---r; <ryry --or; forall k, 1<k <s. For example, if
R ={1,2,3,4,5}, then 22523 is a Lyndon word, but 2252 and 225225 arc not. It follows

thatif r;r, ---r, is a Lyndon word, then for any rotation 0 €S, 6 ¢id, r,

h @ o) o)
not a Lyndon word. Moreover, a Lyndon word cannot consist ol a repcated pattern.
Conscquently, if we write out the letters of a Lyndon word in a circle, we can always
recover the first letter. In the same way, if a circular walk of length » has no rotational

symmetry, then there is a unique place Q such that the letters at the places
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0,0+1,0+2,...,0+r—1forma Lyndon word, if read in this order. This shows that
our ‘circular’ definition of Lyndon word coincides with the traditional 'linear' one.

A good reference for the combinatorics of words is Combinatorics on Words,

[Lo], written collectively under the pseudonym Lothaire. The properties of Lyndon
words are discussed in Chapter 5, written by Reutenauer, which includes a proof of the

following result.

LEMMA 1.3.3  Anyword weR" can be uniquely factored into Lyndon words

W= wWw, W, where w, 2w, 2.2 w,.

The above mentioned factorization of a word w is gotten by finding the shortest word u
such that w =uw,_ and w, is a L.yndon word, and then proceeding by induction. For
example, 22136115 =(2)(2)(136)(115). This establishes a correspondence between
words of length n and multisets of Lyndon words with a total of n letters. In Section 2.1
we will observe that if the word w and the Lyndon words w,,w,,...,w, are coded as
walkalongs, then this correspondence breaks down. The symmetric function
p,(&.-...&y) generates all words on 1,...,N of length n, whereas h,(&,...,£,) generates
all multisets w,,w,,...,w, of Lyndon words on 1,...,N with a total of n places.

Lyndon words play a central role in the most important results of this thesis. One
reason for this is the Lemma 1.3.3. Suppose that we have walkalongs w, =w, =..=w,.
In each walkalong w, choose a place Q,, so that for all i, j, 1<i,j <k, the place Q, in
w; is indistinguishable from the place Q, in w;. Forall i, 1<i<k,redirect O, to Q,,,,
and redirect Q, to 0,. We say that the resulting walkalong w is a kth power of the
walkalong w,. The following lemma is then a consequence of our definition of a Lyndon

word as a circular walk with no rotational symmetry.
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LEMMA 1.3.4  Suppose that there is a total order on R Then every circular

walk on R is uniguely expressible as a power of a Lyndon word on R.

For example, the circular walk below, on the left, is a power of the Lyndon word below,

on the right.

A cycle on R is a circular walk on R in which no two places have the same
letter. If there is a total order on R, then a cycle is necessarily a Lyndon word. A
multiset m of cycles on R in which no two places of m have the same letier is usually

known as a sct of disjoint cycles. We will refer to such a multisct m as a box of cycles on

R, which we draw as shown below.

we

Note that sgn(/m) is the same as it would be defined for a permutation with the cycle
structure of mi. If sgn(im) appears in a combinatorial construction, then we may speak of

N
a signed box of cycles. For example, the expression Zt"e,,(cfl v &y ) =det(I+A)
r=0
shows that e,(&,,...,&y ) is a generating function e,(&,,...,Ey) =D sgn(b) W, (b) for the
bell
sct B of signed boxes of cycles on {l,...,N} that use a total of r places.
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If we think of cycles as elements of the symmetric group, then we can recall that
two cycles commute if and only if they are disjoint. If we are interested in counting
products of cycles, then we want to make sure that we count either (12)(3) or (3)(12),
but not both. We say that two products of cycles are equivalent if they can be gotten
from each other by interchanging adjacent disjoint cycles. Our problem is to select one
representative from each equivalence class. One way to do this is to define a cycle
product to be a sequence of cycles C,,...,C, such that for all i, 1<i<r,if C; and C,,,
are disjoint, then C; has a smaller letter than any in C,,,. Another way, which proves to
be very appropriate in our work with walkalongs, is to define a stack of boxes of cycles as
a sequence B,,...,B, of boxes of cycles such that for all i, 1 <i<r, every cycle in B; has

a letter that appears in B,,,. Of special importance is the first box, which we usually

i+l

indicate as such, as shown below.

first

920
~ o | )
oM O 1O

Given a stack B,,...,B, of boxes of cycles, we write out its cycles as a product of cycles
by ordering the cycles C,,...,C, inthe ith box forall i, 1 <i <r, so that the smallest
label of each cycle increases as we go from left to right, and then writing

Cll ,...,C,’, ...,C,l ,...,C,J. We can recover the stack of boxes of cycles from such a
sequence C,,...,C, by finding the largest & for which C,,...,C, are all disjoint, placing
these cycles in the first box, and then proceeding by induction. We further claim that for
each equivalence class of products of cycles on {1,..., N }there is exactly one stack of

boxes of cycles on {l,..., N} such that the corresponding product of cycles is a
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representative of that equivalence class. For if there were two stacks s and s* of boxes
of cycles for one equivalence class, then there must exist a smallest i, such that there
exists a cycle € such that C is in the ith box of, say, s, butin the jth box of 5", j>i.
There must then be a cycle C’ in the j—1th box of §” that shares at least onc letter from
C, and C’ must appear in s in some A th box of cycles, A >i. The cycles C and C* do
not commute, contradicting our assumption about s and s’. Therefore each equivalence
class of products of cycles on {l,...,N} has a unique representative which is associated
with exactly one of the stacks of boxes of cycles on {1,...,N}. We therefore think of each
stack of boxes of cycles as a canonical description of a cycle product.

Circular walks, closed walks, Lyndon words, and cycles are the basic walkalongs
that we will work with in this thesis. However, there are certain ways of embellishing a
walkalong that we will make use of in our combinatorial constructions. [n this regard we
introduce the concept of case, which is a feature added to a place of a walkalong that has
no effect on the weight of the walkalong. 1n this thesis we make use of upper case, lower
case, and null case. For example, in our proof of Theorem 2.3.1 we attribute one of these
three cases to cach of the places in a sequence of closed walks, and the involution that
we perform depends on the cases of the various places. In such situations we indicate the

case next to the place, as shown below.

Iower null a null
upper 9 @ 9

ower upper ower

Labels 1,...,n are another way ol embellishing the places of a walkalong. They
are very important in combinatorial constructions that are indexed by permutations of S,

typically of the form 21?(0)1)0(61,...,51\,). In suclt a situation the index ¢ of

oes,



Pse= || ps is understood to refer to the partition 050 Oy that gives the cycle

1<i<t (o)
structure of the permutation 0. A cycle of length o, is associated with multisets of
walkalongs generated by P,,» and the letters of that cycle are understood as labels on the

places of these walkalongs. The example below illustrates how labels are drawn next to

the places that they are associated with,

Lt

As with case, lubels do not afTect the weight of a walkalong.

There are situations when the combinatorial objects that we wish to deal with are
linear. Even some of these can be dealt with using walkalongs. For example, a walk w
from i to j of length » may be understood as a closed walk w” from i to i of length
r+1 with 7 at a place Q, j ata place Q4-r, and for which the place O +» undirected.
The weight of w is given by —(,l—-WA(W'). I w” is a cycle, then we say that w is a path,

Ji
as drawn below on the leflt, along with the corresponding w’ on the right.

o

@—v—®—'if@ Q+r

At such times we may also fall back on the traditional way of describing walks in terms

of vertices and edges, with the edge from / to j having weight a;.
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Finally, there is onc important situation in Scction 2.2 where the walkalong fails
us, and we need to make use of a different kind of weight T, (w). Given N={1,...,N},
let N” be the set of words on N of length n. Given x.x,---x, € N”, list the letters of
Xx,+--x, in order as 1™2™...N™ =yy,..-y . We say that y,y,---y, is the content of

ax, -, and we define T, (x,x,--x,) = [ ]a,, -
ISign



CHAPTER 2

POWER, ELEMENTARY, AND HOMOGENEOUS
SYMMETRIC FUNCTIONS

The object of this chapter is to evaluate the power p,, elementary e, and

n?
homogeneous /i, symmetric functions at the eigenvalues &,,...,&,, of an arbitrary N X N
matrix A. We will devote almost all of our attention to the homogeneous symmetric
functions. Indeed, we will record four different combinatorial interpretations for
h,(&.....Ey). One of these is an original interpretation that describes #,(&,,....Ey) asa
generating function of multisets of Lyndon words.
] N T f . HEEN et that f ar
The three bases {1)/l }b_“, 1% }M”, {lz1 }““ have in common the fact that they are
multiplicative. A basis {1)l }A of the symmetric functions of degree n is multiplicative
1
if there is a sequence of symmetric functions b,,,,...,b, for which b, =1 and each b, has
¢(1)
degree r and b, = be» for all A >=n. Inourcase we find that the combinatorial
i=]
description of such a function [’1(‘51»-“’5;\;) yields nothing more than sequences of
1 3 YT < 2 / Thig B : P
objects generated by b, (£,,...,5x )5 Dy (EpsensEn)s o bllw(ﬁl,...,ij,v). This means that

for the three bases {pl}“", {uA }b”, {hl}x;_" of this chapter we may as well restrict our

attention to the functions p,, ¢, /i .

u?
What helps make these three multiplicative bases interesting is that they can be
expressed in terms of each other by way of recursion relations that happen to be very
simple. Evaluating the functions p , ¢, and &, ateigenvalues &,....,&, generates
fundamental combinatorial objects, and in Section 2.1 we are able to show how the
recursion relations express relationships between these objects. In this context the

recursion relations take the form of well known theorems about arbitrary matrices such as

the Cayley-FHamilton theorem and the MacMahon Master theorem. This lays the ground-

Il
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work lor our argument that the theory of symmetric functions of the cigenvalues of an
arbitrary matrix A serves as a unifying framework for the combinatorics of such a matrix.
The homogeneous symmetric functions /z,,(fl,..., fN) stand out among the bases
of the symmetric functions because of their many combinatorial interpretations. In this
chapter they are described in terms of t) Lyndon words, 2) cycle products, 3) circuits,

which we define later, and 4) sequences of walks. We derive the descriptions 1) and 2) in
Section 2.1 as consequences of the recursion relations aly, = i/}rlz,,_, and
i(—l)'e,h,,_, = (. From 2) we then derive 3) and 4), whichrj/c discuss in Scction 2.2
r=0

in the context of the MacMahon Master theorem. As we go along we relate the four

descriptions in terms of each other in the following ways

circuits © cycle products Scction 2.2
sequences of walks < circuits Scction 2.2
sequences of walks ¢« cycle products Section 2.4
Lyndon words “ sequences of walks  Section 3.3

The descriptions in terms of Lyndon words and sequences of walks are shown in Section
3.3 to be special cases of combinatorial interpretations of the forgotien symmetric
functions f, (&,,...,&y).

Our discussion of the mulitiplicative bases concludes with an exploration of the
combinatorics of the walk matrix I/(I-A). The power symmetric functions
Pa(&,.- &y ) are generated by the trace of the walk matrix tr(1/(1-xA)) =
Zx"p"(fl,...,ch), and the homogencous symmetric functions /1”(4"1,...,§N) are
n=0 o
generated by the determinant of the walk matrix det(I/(I - xA)) = Zx"/zn(fl,...,éj v). In
Sections 2.3 and 2.4 of this chapter we document the interplay bcn%l:u closed walks and

cycle products. This culminates in a combinatorial proof of an identity due to Jacobi

[Go]. Results from both of these sections will be relerred to in later chapters.



46

SECTION 2.1 THREE RECURSION RELATIONS

The power, elementary, and homogeneous symmetric functions are related to each

other by three recursion relations

ne, = E(_l)r—lpren_r, nh, = iprhn—r’ i(—l)'erhn_r = 0,
r=1 r=0

that have been known since the days of Newton. In this chapter we interpret the power
symmetric function p,(¢,,...,€,) where &,,...,&, are the eigenvalues of an arbitrary
matrix A. We then employ the recursion relations to verify interpretations of the
elementary symmetric function ¢,(&,,...,€ v) and the homogeneous symmetric function
lz”(éjl,...,éj,v). This approach brings to light the combinatorial significance of the
relations themselves.

A straightforward calculation shows that the power symmetric function
p.(&-...&y) is a generating function for closed walks of length n. We state this fact as
a theorem in order to record its importance to this thesis. Recall from Section 1.3 that a

closed walk is a walkalong with a distinguished place.

THEOREM 2.1.1  Let C be the set of closed walks on 1,...,N with a total of n

places. Then

pn(él"“’éN) = ZWA(C)

ceC

The eigenvalues of A" are &,...,&,. Therefore

P(irn )= 0t =r(A") = (A") +.HA") = Y W, (W)

weN"



47

The last cquality is true because the matrix entry (A“)i/ is the generating [unction of
walks from i to j of length #. QED.

As we indicated in Chapter 1, onc advantage of working with symmetric
functions of eigenvalues is that we can recover the familiar expressions by specializing
a; =0 forall i# j,and g; =X, for all i. With regard to the power symmetric {unctions

this specialization gives (A" )“_ =a, and p,(E....Ey)=a) o rayy = x4y
For purposes of comparison we juxtapose a typical closcd walk generated by the gencral

. . . § 5
expression for 1)5(61,...,69) with a typical closcd walk gencrated by aj +...+ag,.

O O
3) ©
D o))

A consequence of Theorem 2.1.1 is that te{1/(1-xA)) = Zx”pn(afl,..., Ey)isa

n=0
generating function for the power symimetric functions. Likewise, det(I+xA)=

Zx"e,,(él,...,é,v) is a generating function for the clementary symmetric functions, and
n=0 oo
det(I/(T-xA)) = x"h,(&,,....§) is a gencrating function for the homogencous

n=0

symmetric functions. These last two facts follow from the equations
N

H(l +x&)= ix"e”(él,...,é,v) and 121(1/(1 —-xcf,-)) = i.\"'hn(ﬁl,...,&,v) and the

i= n=0 n={)

existence of a Jordan canonical form for A. In Section 1.1 we saw that expanding
det(I+xA) allows us to interpret ¢,(&,,..., &y ) i terms of boxes of cycles. The
MacMahon Master theorem, which is the subject of Section 2.2, provides a rule for
expanding det(I/(I-xA)). There is a combinatorial proof of the MacMahon Master
theorem, due to Foata and Cartier [CF], which interprets /1,,(51,...,§N) as a generating
function for circuits. A recounting of their proof at this point would satisfy the main goal

of this chapter, which is to evaluate p,(&,,....E, ), ¢,(&,....Ey ), and I, (&,.....E,).
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However, this chapter must also prepare us for work in the chapters to come,
when we evaluate £, (&,,....Ey ), m,(&,.....&y ), and 5, (&,,...,E,). This requires that we
appreciate the combinatorial relationships between the objects generated by
Pu(ienly)s e(&nnn &), and By (€., E,). These relationships are most expressly
captared upon interpreting the three recursion relations that relate these functions. In this
section we interpret these recursion relations. One way of doing this would be to start
with combinatoriat interpretations for p,(&,....&y ), ¢,(&1r- Ey ), and &, (&,,..., &), and
to give combinatorial proofs of the recursion relations. We choose the alternative course,
which is to assume that a recursion relation is true, for example, ne, = i(—l)'"lj),e"_, ,
and then to show that there are pairs of combinatorial objects which sati;?y this relation.
If we know that the symmetric functions p,_ generate the first object in each pair, then we
can conclude by induction on »n that the symmetric functions ¢,_, generate the second
object.

With this in mind, we state the following theorem, the proof of which serves to

illustrate the recursion relation ne,(&,,...,&,) = i(—l)"_lpr(él,...,ZfN)en_,(ﬁl,...,§N).

r=1

Recall from Section 1.3 that a box of cycles is a set of disjoint cycles.

THEOREM 2.1.2  Let B be the set of boxes of cycles on 1,...,N with a total of

n places. Then

e”(él,...,éf,\,)= ngn(b)WA(b)

bebB

As discussed above, we demonstrate that this expression for en(éfl,..., &y ) satisfies

the recursion relation ne,(&,,....Ey) = i(—l)'—lpr(é“,...,EN)en_,(rfl,...,ﬁN) for all
r=]

integers n>0. The result then follows by induction because it is true when n=1 in
which case the box consists of a single cycle with a single edge and

e (& Ey) = 0y F Aoty = pE b Ey)-
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By our claim the right hand side of the relation generatcs pairs consisting of a
closed walk of length r >0, with sign, and a box of cycles, with sign, with n—r =0
edges. The sign of the closed walk is (~1)". which is its sign as a walkalong. We
define a weight preserving sign reversing involution on these pairs that proceceds by
taking a walk along the closed walk. Starting at the coordinate Q, the origin of the walk,

find the smallest i = 0 such that

cither the letter at Q4 also appears at some R in a cycle [rom the box,
or the letter at Q41 cquals the letter at some K =+ j for which 0 < j <.

The two events are mutually exclusive. This is because the second event cannot occur at
Q +1i unless the letters at Q,Q +1,...,Q -+ arc not to be found within the box. If Q-1
exists by virtue of the first event, then let the affected cycle consist of places
R,R+1,...,R+{—1. Remove this cycle from the box and insert it into the walk so that
Q+1i isredirected to R+1 and R is redirected to Q41+ 1. This preserves weight
because R has the same value as Q+i. 1f Q+1i cxists by virtue of the second event, then
remove the cycle @+ j+1,...,0+1 from the walk and place it in the box. This involves
redirecting R=Q+jto Q+i+land Q+ito R+1=0Q+j+1.

If Q-+ exists, then this action describes a sign reversing weight preserving

involution, as portrayed below, wherc i =2 and the lctter Sisat Q+2.

5 4ToT0G
@ Qo %

G)—8
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The sign of the term changes because all of the walkalongs have sign, and in the first
event one walkalong is made from two, whereas in the second event one walkalong is
made into two, as in Lemma 1.3.1. The action is reversible. If initially Q +1 is selected
by virtue of the first event, then a cycle is added, but if the action is repeated, then Q +i
is selected by virtue of the second event, and the same cycle is removed, and vice versa.
The fixed points are those pairs for which Q +1i does not exist. For these pairs the
closed walk is a cycle that is disjoint from the cycles in the box. Each pair is a box of
cycles of length 2, but one of the cycles has a letter that is marked: this cycle is the
closed walk and the mark is at its origin. Note also that all of the cycles have the
appropriate sign. Any one of the 1 letters may be marked and therefore the generating

function for the fixed points is ne,(&,,...,Ey). This proves the theorem. QED.

REMARK 2.1.3  Alternatively, in the special case that n =N it is possible to
define p,(&,,...,Ey) =N as the generating function of the closed walks of length zero.
Then the recursion relation may be written 0 = ﬁl(—l)’_1 ey (Ervees E P, (Enecis En )
The action may be altered so that Q +i may C(]L;Z(l) Q+r, where r is the length of the
closed walk, in which case the closed walk is a cycle of length » and is placed in the box,
leaving behind a closed walk of length zero from and to the value of . The recursion
relation may also be written 0 = zN:(—l)’"leN_,(éj,,...,éN)p,(él,...,éN), in which case the
edges in the box may be thought ro:g as taken from —A, so that the sign is changed upon

adding or removing a cycle from the box. In any event there are no fixed points with the

action defined in this way. QED.

We draw attention to the special case n = N because then the recursion relation

that we have interpreted is the trace of the matrix equation given by the historic Cayley-



Hamilton theorem. This equation states that evaluating the cliaracteristic polynomial
det(x] — A) at the matrix A gives (del()cl—A)L:A )U =0 for 1 <i,j<n. It was first
given a combinatorial interpretation by Rutherford |R] [BR, 328] in 1964, and later by
Straubing [Str] in 1983. They employ exactly the same action as we did in the proof
above. The only diffcrence is that the walk is in general not closed, but from a fixed i to
a fixed j.

It may be claimed that symmetric functions cannot capture the combinatorics of
those situations where symmetry is broken. 1If we think of symmetric functions as
clements of a commutative algebra, then this is true. However, we may think of the
symmctric functions evaluated at cigenvalues as described by the weights on the
combinatorial objects that they generate. From this perspective, for example, we may
take a power symmetric function p |, (él,...,é,\,) and in each term replace the first if any
occurrence of a; with an x. Then if we take the coeflicient of x we get walks from i to
j of length r. In this light we scc that the recursion relation is a generalization of the
formula from the Cayley-Hamilton theorem, and not the other way around! Indced, the
Cayley-Hamilton theorem is only delined for the special case n= N.

This same argument proves the equation (I/(I—A)), det(I-A) = det(l - A
which is gotten by cross multiplying after using Cramer's rule to express the walk matrix
1/(1—- A) as the inverse of the matrix - A. Note that (J/(1- A))ij is the generating
function for all walks from i to j and det(I-A) is the generating function for all boxes
of cycles, with sign and with edges from —A. Think of the walk from i to j as a closed

walk from i/ to i in which the last edge is from j to i but the weight of this edge is set to

equal 1. In the example below this missing edge is «,.



52

LR
0204 040240120,,0) @

Performing the action as before leaves fixed points that are boxes of cycles for which

some cycle contains an edge from j to i but that edge has weight 1. The generating
function for these fixed points is det(I - A)”) and this proves the result. We will later
encounter this result in Section 2.4 where we will prove it again using a different
interpretation. In that case the interpretation of the fixed points will prove useful in
deriving a new quotient formula for evaluating the Schur functions s, (&,,...,&y).
Zeilburger [Z] drew attention in 1985 to the connections between combinatorial
techniques used to prove the Cayley-Hamilton theorem, the MacMahon Master theorem,
the Matrix Tree theorem, as well as det(A)-det(B) = det(AB) and the identity
det(e* )= "™ due to Jacobi. These results depend on what we term "redirecting places”
and on the effects of transporting a cycle with sign and with edges from —A. The
definitive survey at this date is the last and longest chapter of Brualdi and Ryser's [BR]

book Combinatorial Matrix Theory, published in 1991. Indeed, the recursion relation

(-1)'ko, 2( -1)"'o,tr tr(A’), where " 0, is the coefficient of x"* in the characteristic
polynomial of A", appears as an exercise in their section on the Cayley-Hamilton
theorem [BR, 334] and likewise in Zeilburger's paper. However, neither of these surveys
suggests that symmetric functions play a role in the combinatorics of generic matrices.

In this thesis we accumulate evidence piece by piece to demonstrate that the

symmetric functions of eigenvalues provide a natural framework for unifying disparate
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results about the combinatorics of an arbitrary matrix A. The advantage of such a

franework is that it makes it possible to approach the study of combinatorial phenomena

in a systematic manner. The following is a new and surprising resuit that appears natural

upon interpreting the recursion relation nh, = zn: ph,_, . Itsays that hn(&jl,...,&jN) is the
r=l1

generating function for words by which cach word is coded up in terms ol its

factorization into Lyndon words.

THEOREM 2.1.4  Let M be the set of multisets of Lyndon words on 1,...,N

with a total of n places. Then

B(&veny) = D W ()
meM

We show that the expression above satisfies the recursion relation
nh,(E,....Ey) = z":p,(dj,,...,&j,\, M, (e &y) Torall >0, and therefore is true by
induction as it is trrsia for n=1, when (&,,....& n) =0, F...+dyy. Our argument depends
on the fact that a circular walk is a power of a Lyndon word, and a closed walk is a
circular walk with a distinguished place.

n

We think of )" p,(&,,....E4)h,_,(&,,.... ) as the gencrating function of pairs
consisting of two objre=(;ts having a total of n places. The first object is any closed walk
of length r. But we think of it as any scquence of Lyndon words w, = w, =...=w_, all
alike, such that there are r places in all, and onc of the places X in the last word is
distinguished. The second object is any sequence of Lyndon words v, <v, <...<v, in
weakly increasing order such that there are n —r places in all. Construct a single object
from each pair by forming the weakly increasing sequence
v Sy, So<w = w, == w S0 Sy and continuing to distinguish the place X

For example, il w, = w, =244 and v, =223, v, = 241, then we have
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We claim that the objects thereby generated are all of the weakly increasing
sequences of Lyndon words 1, <u, <...<u, with a total of n places and with one of these
places distinguished. If the distinguished place is in a word, then removing this word and
all like words that precede it recovers the original pair of objects. Each letter in each
Lyndon word is ordered, and each Lyndon word in the sequence is ordered. This means
that distinguishing any one of the » places yields a distinct object as illustrated above.
Therefore by our claim the objects are generated by nh,(€,,...,&y ). The recursion
relation is satisfied and the result follows. QED.

Our interpretation of #,(&,,...,&,) is unexpected, but appears natural in the
context of the recursion relation nh, = z": ph,_, . Ifweset a; =0 forall i+ j,and
a,; = x; for all i, then we recover the funrlzil]iar expression for the homogeneous symmetric
functions. In this case the only Lyndon words are a,,,q,,,...,ay, and the multisets may

be written as sequences a;; -a;, for which 1£i, <i, <...<i <N, sothat

i iy

B(EveesEn ) = 2”&&”%"'”&& = 2 x,x, -+x, . For purposes of comparison we
1SisS..Si SN 1< £..<i, SN

juxtapose a typical multiset of Lyndon words generated by the general expression for

h(,(él,...,ijg) with a typical multiset of Lyndon words generated by 2(1‘.],.'0,.2,20,.],.](1,.4,.4 .

1SS <...$iy <9
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At this point we also remark that for both p,(&,,...,&y) and i,(&,,...,&y) all of the terms
are positive and the number of terms equals the number of words of length #.
A more transparent way ol obtaining Theorem 2.1.4 is to interpret the equation

| « ) . )
h =— 7, but we reserve this approach for later when we evaluate the forgotten
r [l‘ [4]

* Ues,

basis. At this time we point out & more algebraic way of proving ‘Theorem 2.1.4. In
order to establish a context for this, we note that the power symmetric functions and
homogeneous symmetric functions may be related by the following cquations taken from

Macdonald's book [ M, 16]:

E-‘dl)r(’rl""’XN)ZJ;l = Z Xi = :1_1]‘21()'——]—— =

ral i =Xt 2 — Xl

d 1 d l
—log = —log » I (X,....xy )l
dt 0*’1;[1—)-,1 dt "% (e i )

X

Xt - [—x1

which depend on the fact that ilog !

7 . In‘an analogous manner we may

write

A d 1 d I ] d I
ir = uf L0 = Ltop 1) = Diond
(I—t-AJ (dt %I—tAj dar %[l—z/\, It %“Ct(l-m)

, 1 d |
where we first use the fact that = —log
I-tA  dt "1-:A
¢"" = dete®. Ourinterpretation of ,(&,...,E,) in terms of multiscts of Lyndon words

, and then use the identity

may be gotten from the equation
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I I
(rlog = logdet
: ”(I—AJ OF C(I—A)

upon expanding the power series log(TI/(1-A)) = A+ %A*+ %A’+... and interpreting
tI(log(I/(I - A))) = Z%tr( A") in a suitable way.

nzl

Consider a term from tr( A"). It corresponds to a closed walk of length n, and if
we think of it as a circular walk w, then it is the rth power of a Lyndon word £. This is
to say that W, (¢)" =W, (w). There are % closed walks that correspond to the circular
walk w. Let L be the set of all Lyndon words, and let C, be the set of circular walks that

are the rth power of a Lyndon word. Then logdet(I/(I-A)) = tr(log(l/(l - A))) =

PN CUEDWHANCOEDWIANGEDWWANGE

n21 r2l weC, rzl fel el rzl

210g(1/(1-wA )= logTT(1/(t-W,(0)) ) This gives us the equation

tel el

H[l —V:’A(f)J ) dc‘[I—IAJ

and Theorem 2.1.4 follows from the fact that det(1/(I~ A)) :H(l/ (1-¢ )

=Y h £y

nzl

Another combinatorial interpretation of lz,,(é,,...,é,v) comes from the last of the

three recursion relations. In Section 1.3 we defined stacks of boxes of cycles and thereby
established a canonical description for products of cycles in which cycles commute if
they are both disjoint and adjacent. We now use the recursion relation

i(—l)'e,h,,_, = 0 to show that the homogeneous symmetric function #,(&,,...,&,)

generates all stacks of boxes of cycles that have n places.

THEOREM 2.1.5 Let S be the set of stacks of boxes of cycles on 1,...,N with a

total of n places. Then
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llu(él,...,@,\,) = Z W, ()
seS
As before, we show that the above interpretation for /1, (&,,..., &y ) satisfies the
recursion relation i(——l)" e, (s E_(ErrnnEy) = 0, and then the result follows by
induction. We thir;l:(()of i(—l)"e,(fl,...,é’,v (€., &y ) as the generating function of
pairs of objects with a 101101 of n places. The first object is a signed box of cycles that has
edges from —A, r in all. The second object is a stack of box of cycles with n—r edges

in all. Given a pair of objects, say that a walkalong is a candidate if it is

cither a cycle in the signed box .
or a cycle in the first box of the stack that is disjoint from all cycles
in the signed box.

There must be at least one candidate because otherwise both the signed box and the first
box are both empty. The candidates arc all disjoint and therefore there always exists a
unique candidate C with a smallest letter £. Move C {rom the signed box to the {irst
box (and the front of the stack), or vice versa. This results in a pair of objects that has
opposite sign because a cycle has becn added to or removed from the box of cycles, with
sign, that has edges in —A. This action defines an involution becausc the candidates do
not change. If C was moved to the signed box, then any cycle that newly enters the first
box must overlap with it and is not a candidate. If C was movcd to the front of the stack,
then any cycle not disjoint is pushed out of the first box and is not a candidate. The same
candidate C is chosen upon a second application of the action, and it is returned to where
it originally was. This describes a weight preserving sign reversing involution, as

illustrated below, where £ =2 and C is the cycle (26).
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9 signed signed
a box @ box

Jirst c 0 Jirst

box 6 @ box

There are no fixed points because C always exists. QED.

Our first instinct after proving Theorem 2.1.4 is to check to see that setting
a; =0 forall i# j and a; =x; for all i recovers the familiar expression for the
homogeneous symmetric functions. In this case the only possible cycles are
11y ns Gy and therefore 1, (&,,....Ex )= Daga,-~a, = Y xx-x. We
1€i,<...<i, SN 1€i<...Si, <N

compare below a typical stack of boxes of cycles generated by the general expression for

he(&,»-...&5) with a typical stack generated by D a,.a,,a,,4a,, .

1§ $i; S...Si <9
I E % Jirst box
first box

We remark that the action described in the proof works even when N < n, in
which case ¢,(£,,...,£,) =0 for r> N and there appears to be a new condition, that the
index n—N of hn_,(ﬁl,...,ch) cannot be less than n— N. However, any candidate from
h"_,(ljl,...,ch) must be able to fit in the signed box, and therefore removing the cycle
does not reduce the index by more than N —r and does not violate the "new" condition.

The recursion relation z":(—])’e,,h"_, = 0 gives the terms of nth degree in the

r=0

expansion
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which if evaluated at x, = & ,...,xy =&, is equal to

dct(l—A)-det( I )=l
I-A

The action used in interpreting the recursion relation Y (<1)"¢,(& ... Ex M, (Epvers Ey )
r=0
= 0 can also be used to prove the MacMahon Master theorem. The MacMahon Master
theorem provides an expression for the expansion of 1/det(I — A) and is the subject of the

next section.
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SECTION 2.2 THE MACMAHON MASTER THEOREM

The MacMahon Master theorem provides a means for expanding 1/det(I — A).
Foata and Cartier [CF] have interpreted this expansion as the generating function for a
kind of multigraph that they call circuit. They have used this interpretation to give the
MacMahon Master theorem a combinatorial proof. In this section we first state the
theorem and show how it may be interpreted in terms of circuits. We then present a
weight preserving correspondence between circuits and cycle products. This makes it
possible to state a proof of the MacMahon Master theorem which coincides with the
interpretation of the recursion relation i(—l)'e,(cf],...,éN)h"_,(fl,...,cf,\,) = ( that we
gave in the previous section. We conc]ilzdoe this section with a weight preserving

correspondence that relates circuits with sequences of closed walks.

The following theorem is known as the MacMahon Master theorem.

THEOREM 2.2.1 Define the matrix AX as follows:

x 0 -0 AnX,  dpXy o Xy
0 x a X,  dnX,

X = . . AX = .
0 AN an X, Uy Xy

The coefficient of x{'x;t...xy in 1/det(1— AX) equals the coefficient of x'x2...x} in

™

! - .\ - -
(anx1 + (’12X:»---+“w-’(~) ' (a_,,.\', + (123.\2...-{-{13N_\N) --~((1Nl.\l + (INQXQ...-HINNXN)

This theorem will be a consequence of Theorem 2.2.2 and therefore we do not

N
prove it separately. Instead we consider the objects that H(a“x, F Uy Xy Ay Xy )

i=]
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generates. The observations that we make about these objects are originally due to Foata
and Cartier |CH.

Fix r,...,ry. Any term in the product (@, x, + a;,x,...+a,x, )" contributes a list
of edges a,x; coming out of a vertex i such that there are r; edges in all. From this point

r

N
of view, any term in 1_‘[(c1,‘1xl +d, %, Faxy )" constitutes a list of r, edges out of the

vertex I, alist of r, eid:;;es out of 2, and so on. This means that we may depict each
term as a multigraph (a graph with multiple edges). There must be r; edges coming out
of any vertex i and these edges must be ordered with respect to each other. Furthermore,
the fact that we take the cocfficient x{'x;'...xy means that there must be exactly r; edges
a;Xx; going into any verlex j.

The function 1/det(I — AX) gencrates multigraphs on the vertices 1,...,N such
that for all i, the edges coming out of a vertex i are all ordered, and their number equals

the number of edges coming into the vertex i. Such multigraphs are called circuits.

Consider the example below, which depicts the circuit that corresponds to the term

I,

5
B U B S : : . . )
U dy Ay Aoyl Uy Ay (g3 gy XT XXX I I I (a”,\l ta,x, aaxy Fa,x, b ”iS“\S)

i=]

where r, =3, r, =3, 1, =2, r,=3, r; =0.

We may declare x; =1 s0 as to suppress the variable x;, which cair always be recovered
by setting @; — ¢;x;. The MacMahon Master thcorem may (hen be understood as stating

that I/det(I—-A) = h,(&,,....£y) is a generating function for all circuits.

n20
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A circuit may be completely described in two line form by listing its edges in the
N

order that the product II(anxl + aizxz...+a,.NxN)" generates them. The top line lists the
i=1

vertex from which the edge leaves, and the bottom line lists the vertex to which it goes.

For example, the two line form of the circuit drawn above is

1 112 2 2 3 3 4 4 4
(2]]41324324J

Note that the letters in the top line and in the bottom line must appear with the same

frequency. If the letters are 1,1,2,2,2,3,3,4,4,4, then they must appear in the order

1,1,1,2,2,2,3,3,4,4,4 in the top line, but there are no restrictions on the placement of

these letters in the bottom line. The resulting two line form is said to be a rearrangement

of the letters 1,1,1,2,2,2,3,3,4,4,4. We define a weight T, (w)=

A0 A, Aoy Uy, 040,,0,,, ON this Tearrangement w = 21141324324 which is the

same as the weight of the associated circuit. In general, if x,x,---x, is a rearrangement of

letters y,y,---y, that belong to {1,...,N}, then T, (x.x,--x,) = [ ]a,, -

The two line form of a rearrangement may be compareclisjvnith that of a
permutation. A permutation is a bijection of the set {l,..., N}, whereas a rearrangement is
a bijection of a multiset, in this case {l, 1,1,2,2,2,3,3,4,4,4}. This is perhaps the point of
view of the originator of the MacMahon Master theorem, which is that 1/det(I— A) is the
generating function for all rearrangements. The theorem is useful because it allows one
to make facts about permutations more general, or alternatively, to handle special cases.
It is deservedly called a Master Theorem because every specialization of a; results in a
new theorem.

Of all of the ways of interpreting h,_(lj, yees Cy ), the fact that it generates circuits is

arguably the most important, given that it is this description which extends to
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5, (61,...,§N) in Section 4.4 when we consider traces of the representations of the general
linear group.
The circuit that we have been considering may also be described by a table in the

following way:

I ! '

Uy dy Uy : U3
t 1

Ay |y |y dyy
i [} ]

ay Tyl U

Each column of such a table may be thought of as a computer stack. The idea is that new
cdges may be put down or old edges taken away {rom the top ol any stack. This point of
view was taken by Zeilburger [Z] in his recounting of Foata's proof ol the MacMahon
Master theorem. We will refer to such a table as a circuit table.

Two simple but important remarks can be made about reading information from a
circuit table. The first remark, which we call the Horizontal fact, allows us to establish
the weight preserving correspondence between circuits and cycle products that is the
subject of Theorem 2.2.2. After we prove this theorem, we will make the second remark,
which we call the Vertical fact. We use the Vertical fact to prove Theorem 2.2.3, which
establishes a weight preserving correspondence between circuits and certain sequences of
walks.

The Horizontal fact is the observation that the edges from the top row of a table
must form at least one cycle. Morcover, a circuit table is left upon removing any or all of
these cycles. This is true because in the top row there is one edge ;) for each Jetter i
that appears in the circuit table. It is possible to generate a sequence of edges

a ..., all from the top row. These edges cannot all be distinct,

Gistiy Lstststi) > A oy

and therefore there must be at least one cycle with edges a,, a

(st 1y

REIrE Note that

there may be more than one such cycle, but that all such cycles are disjoint, because there
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is only one edge Ay for each letter i. In the example that we have been considering
there is only such cycle and it has edges a,,,4a,,,a,,. Remove any such cycle from the
circuit table. Advance the remaining edges by one row in each of the affected columns.
The result is a circuit table because removing a cycle has not affected the fact that the
number of edges into a vertex j equals the number of edges out of j.

The Horizontal fact allows us to establish a weight preserving correspondence

between circuits and stacks of boxes of cycles.

THEOREM 2.2.2  Let N" be the set of words on 1,...,N of length n. Then

hn(él""’éN) = ZTA(W)

weN"

We know by Theorem 2.1.5 that £ (&,....,&,) is a generating function of stacks of
boxes of cycles on 1,...,N with a total of n places. Our aim is to use the Horizontal fact
to establish a weight preserving correspondence between circuit tables and stacks of
boxes of cycles. This will prove that h,(&,,....6y) = Y T, (w).

Given a word we N”, let ¢ be the correspondin?iircuit table with n edges, let b,
be the box of cycles that consists of all of the cycles formed by the edges in the top row.
The Horizontal fact states that this box of cycles is nonempty and removing it results in a
circuit table #,. In general, define b, to be the box of cycles that consists of all of the
cycles formed by the edges in the top row of f,_,, and define ¢, to be the circuit table that
remains upon removing b, from ¢,_,. The Horizontal fact implies that there is a well
defined sequence b,,...,b, such that b, is nonempty for all i <k, and empty for all { > £.
It furthermore implies that every cycle C in D, overlaps some cycle in b,_; because

otherwise C would be in b,_,. This means that b,,...,0, defines a stack of boxes of

cycles. Below is the stack which corresponds to the circuit that has been serving as our



cxample. Each box in the stack is juxtaposed with the circuit table from which it was

removed.

o’ @
box

| | ] 1 1 | 1 1 ] | 1
Uy Uy Uy Uy ay, : ay ! 1z ! dy a ! ayy ! Uy ! ay, a b Uy,
( | ]
1 1 [} ] | i ! ]
dyy | Uy | Uy | dy dyy |y o Ay i i Uag Vo
! I 1 I I I I I I I
ay, 1 dy | 2 ayy ) ! ! ! ' ! -

This procedure maps every circuit table to a unique stack with the same weight. 1t
is straightforward to recover the circuit table from the stack. In fact, every stack of boxes
of cycles gives rise to a different circuit table. Hence there is a weight preserving
correspondence between circuit tables on 1,...,N with # edges and stacks of boxes of
cycles on 1,...,N with # places. By Theorem 2.1.5, the stacks are gencrated by
,(&,,...,Ex ), and the theorem follows. QED

As usual, we may examine the consequences of this theorem when a;; =0 for all
i # j,and g; = x; forall i. Then the word w & N" must have its letters written in weakly
increasing order, so that the weight consists of edges a,;. For cxample, we may have a
word 2235 with weight a,,d,,d,,d55. Therelore the specialization gives the usual

dcfinition of the homogencous symmetric function h,,(éf,,...,ch) = Zu,-l,- A -d;;
1

1< €...€i, <N
1< S...<i, SN

As we discussed in Section 1.3, the stacks serve as a canonical description of
cycle products. The above correspondence, due to Foata and Cartier [CF], was used by

them to show that I/det(I— A) is a generating function for cycle products. We may also
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remark that Theorem 2.2.2 shows that the action in Theorem 2.1.5 gives a proof of the
MacMahon Master theorem.

The Vertical fact provides another way of reading information from a circuit
table. Once we formalize it, we will be able to use it to prove Theorem 2.2.3, giving a
fourth interpretation of 4,(&,,...,&,) as a generating function. Given a circuit table, let i
be a letter that appears there. There must be an edge @, in the top row. Remove it from
the table. Construct a sequence ¢, ,a,; ,...,a; ... inthe following way. If the last edge

in the sequence is a;; , then find the edge at the top of the column associated with i,
remove it from the column, and add it to the sequence. If i, # i, then it is always
possible to find this edge. The reason is that among the edges that are left in the table the

number of edges that come out of i, # /, is one greater than the number going into
i.,, # i, (and therefore nonempty), whereas the number of edges that come out of all other
k # i is equal to the number going into k. This means that the sequence can continue
indefinitely so long as no edge ever leads us back to the column associated with i,. But
there are only finitely many edges, and therefore the sequence must take us back to the
column associated with i,. IHence the sequence determines a closed walk from i, to .
This then, is the Vertical fact: If ¢ walk along the circuit table starts at the top
entry of the ith column, then it eventually returns to the ith column. Moreover, a circuit

table is left upon removing the walk .

The following interpretation of II,,(éjl,...,éjN) is & consequence of the Vertical fact.

THEOREM 223  Fiv oeS,. Let V, be the set of sequences (W, wy,...,wy)
of closed walks on 1,...,N with u total of a places for which o(j) is the letter at the

origin of w; and the letters o(1),6(2),...,0(j —1) do not occur in w,. Then

II,‘(é:w-"’éN): ZWA(S)

seV,
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We present a weight preserving correspondence between circuit tables on 1,...,N
with n edges and the sequences of walks described above. The theorem will then be a
consequence of Theorem 2.2.2.

Given a circuit table #,, we construct a sequence of circuit tables ¢,,...,fy and a
sequence of walks w,,...,w,. If the letter o( j) does not appear in the circuit table ti1s
then we define w; to be the empty walk from o(j) to o(j). Otherwise, suppose that the
letter o) appears in the circuit table ¢, ,. Then there must be an edge of the form
Ay ivs(oli)) in the top row of ¢;_;. The Vertical fact tells us how to remove a closed walk
from o(j) to o(j) from the circuit table ¢, . Continue removing closed walks from
o(/) to o(j) until the column corresponding to o(;j) has no more edges. Let w; be the
concatenation of these walks. Let #; be the circuit table that results upon removing w;.
There are no occurrences of a(j) in ¢, because the column corresponding to o(;) is
empty. We see that the sequence w,,...,wy, is well defined and that for all j the letters

o(1),0(2),...,0(j —1) do not appear in the walk w;.

This defines a one-to-one weight preserving map from the circuit tables to the
sequences of walks. But it is possible to recover the circuit table from the sequence
Wy,»...,W; by laying down the edges in each walk in reverse order. In fact, any such
sequence of walks gives rise to a different circuit table. Therefore the map defines a
weight preserving correspondence and the theorem follows from Theorem 2.2.2. QED

The correspondence in the theorem gives the following closed walks in the
example that we have been considering if we let o(1)=1, 0(2)=2, o(3)=3, and

0(4) = 4. Each walk is juxtaposed with the circuit table from which it was removed.
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1 { ] 1 ] 1 ] H |

a,, ! ayy ! as ! 43 ) Qy3 ) Ay Gy o1 1Oy
[} I 1 1 [} ]
ay | Gy | Ay | Ay ' i M A
1 I 1 ] ] ] ] ] 1
4y | Oy | om ' ' ! A A

For purposes of illustration we may also consider what happens when a;; =0 for all
i# j,and a; =x, forall i. Then the walk that starts and ends at the letter o(j) must be

kl . . e
of the form (aa(j)a(j)) . This recovers the usual definition of the homogeneous

symmetric function h,(,.....E, )= Y a,a,a, = D XX X, .
1<i <50 <N 1) S...<i SN

Suppose that ofi) =i for all i. We describe Theorem 2.2.3 in the language of
Foata [L0,197] . The closed walks from i to i that are gotten by the Vertical Fact are
called dominated circuits because in each of them the letter i appears only once and all
other letters are greater. Theorem 2.2.3 shows that for each circuit there is a unique
"dominated circuit factorization". If we let w’ be the word gotten by reading the letters
of the closed walks w,,...,w, in sequence, then it is possible to recover w from w’. The
mapping w — w’ is known as the First Fundamental Transformation.

The action that Foata and Cartier use to prove the MacMahon Master theorem is
made possible by the Vertical fact. Given a circuit, walk along the first nonempty closed
walk w;. As we walk along, we find ourselves in the same predicament as in our
interpretation of the Cayley-Hamilton theorem. We will either make a cycle, which we
place in the box of cycles, or we will touch upon a cycle from the box, which we
incorporate into the walk. The proof is essentially the same as in Remark 2.1.3.

The combinatorics of closed walks is investigated in the last two sections of this

chapter. This will lead to Theorems 2.3.1 and 2.4.3, which are both generalizations of
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Theorem 2.2.3. Another generalization occurs in Theorem 3.3.2, which presents an

interpretation of the forgotten symmetric functions f,(&,,...,&y)-
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SECTION 2.3 THE DETERMINANT OF THE WALK MATRIX

Closed walks underlie much of the combinatorics of symmetric functions of
eigenvalues. We have already seen that pﬂ(él,...,ﬁN) is the generating function for
closed walks of length n. In the next chapter we expand symmetric functions in terms of
the basis {1)/1 }b", and this will thrust closed walks into a prominent role. In this section
we become more familiar with the walk matrix I/(I-A). We calculate ¢,(,,..., 0, )
where @,,...,®, are the eigenvalues of I/(I-A). In the special case n= N, the
involution behind this calculation will provide an interpretation for the equation

> > my(6ennby) =D b (£, E,) that we discuss in Section 3.4,

r20 Asr rz0
Theorem 2.2.3 expressed 4,(¢,,...,&,) as the generating function for certain

sequences of walks. That there should be a relation between A, (£,,...,£y ) and walks is

indicated by the equation

(75) = wa
det =
I-A det(I-A)

which follows from the property of determinants that detB™ = 1/detB. The left hand
side consists of both positive and negative terims that are products of walks. There is a
sign reversing involution on these terms by which they cancel away, leaving behind as
fixed points the desired sequences of walks.

Our labor bears greater fruit if we consider the more general question of
calculating the coefficients of the characteristic polynomial of the walk matrix. Ignoring
sign, these coefficients are the elementary symmetric functions e,(a)l,...,a)N), where

=1/(1-¢ = l/(l - &) are the eigenvalues of the walk matrix. If r =N, then

we have ey(@,,... Hl/l— = det(I/(I - A)).
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We know that e”(w,,....wN) generates boxes ol cycles employing a total of »
edges. These edges are taken from the matrix I/(1~ A), which means that they are
generating functions for walks. In the case of the generating function (I/(l - A))ﬁ, the
walks include the empty walk (walk of length zero) from i to i. We think of each term
of e,,(a)l,...,wN) as a box of cycles in which the edges have been replaced by walks.

The places in the box of cycles are very important. Assign upper case to every
such place. These places are the origins of the walks. The letters at these places are also
important. Note that these letters are all distinct. Assign lower case to every place
(except the origin of a walk) at which such a letter occurs. Assign null case to any place
at which no such letter occurs.

If a walk is empty, then it must occur in a cycle of length one. This cycle has one
place and the letter there lias upper case. Let the place be undirected, so that it has no
weight.

The sign of the term is the same as that of the box of cycles. The result of
replacing the edges of a cycle with walks yields a walkalong. ‘The origin ol any such
walkalong is the place with upper case that has the largest letter. In the following lypical
term from en(a)l,...,a)N) the origins of the walkalongs arc marked by Q, K, S, T, the
cycles are (2), (3),(61), (847), and the walksare | -2 —>8—5—0, 2> 2, the empty

walk from 3t03,4 9585557, 69594-1,7->8,and 8§22 544,
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We say that a place of upper or lower case with letter j is a problem place if the letter at
the origin of its walkalong is k and k>j. In the example above the problem places are
0+2,0+3,0+4, T+1,T+2, T+3, T+6. Inparticular, any upper case place is a

problem place (excepting the origin of a walkalong). This last fact is the basis for the

following result.

THEOREM 2.3.1 Let @,,...,@, be the eigenvalues of I/(I1-A). Fix c€S,.
Let W be the set of sequences w,,...,w, of closed walks on 1,...,N for which letters
I, <, <...<li, exist such that O'(i j) IS the letter at the origin of w; and the letters

a(i,), o(i, ),...,O'(i j_,) do not occur in w;. Then

Note that the closed walk w; may possibly be the empty walk from i; to i;. For
the purposes of our proof we assume that ¢ is the identity. The general result will follow
by symmetry.

We describe an involution on the sets of walkalongs that we have defined above.
Find the smallest j, then the largest k, and then the smallest i such that there is a
problem place Q of value j at a place T +1 in the walkalong with letterk at origin 7.

If there are no such j, k, i, then do nothing. Such a term will constitute a fixed
point. Otherwise, by our definition of problem place there is a unique occurrence R of

value j that has upper case.

i) If R isdirected and R # Q, then redirect Q to R+1 and R toQ+1
it) Orif R is undirected and R # Q, then delete R and let Q have upper case,

whereas if R is directed and R = Q, then let Q have lower case and
introduce an undirected upper case place with value j.
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These instructions change the answer to the question, are Q and R in the same
circle 7 But they preserve the answer to the question, what is the distance from Q to R if
they are in the same walkalong, and what is the distance around the walkalong of R, if
not 7 The instruction ii) addresses the special circumstance in which this distance is zero,

so that either R=Q or R is undirected.

lower lower

R+1 e lower lower Upper

Above is an example that illustrates instruction i) and below is an example that illustrates

instruction ii).

The map determined by these instructions is well defined. Redirecting Q and R
turns one walkalong into two walkalongs or two walkalongs into one walkalong. The

instructions preserve the values of the places and their cases: upper, lower, or null.
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Therefore the map is weight preserving. In particular, introducing or deleting an
undirected place or changing the case of Q does not affect weight.

The map is also sign reversing. The sign of each term is given by the sign of the
cycle structure of the upper case letters. The instructions do not affect the number or kind
of upper case letters, but they do change the number of cycles by one. This changes the
sign.

The map is an involution because O remains the problem place after the
instructions are executed. If instruction i) is executed, then Q and R belong to
walkalongs in which no place with upper or lower case has value less than j, and no
place with upper case has value greater than k. Also, if Q and R start out in the same
cycle, then the coordinate of R may not be less than that of Q. Therefore from the origin
of the walkalong to Q no place is redirected. Q continues to be the problem place of
highest priority. A second application of instruction i) reverses the effect of the first
application. Likewise, if instruction ii) is executed, then no place is redirected. We
conclude that the map is a weight preserving, sign reversing involution.

The fixed points of the involution are those sets of walkalongs for which the value
at the upper and lower case places of a walkalong attains a minimum at the origin. One
consequence of this is that in each walkalong the origin is the unique place with upper
case. Therefore the fixed points have positive sign because the corresponding cycles
have length one. Note also that some or all of the walkalongs may consist of a single
undirected place.

We think of each walkalong as a closed walk with origin at the origin of the
walkalong. The letters at the origins are all different and therefore the closed walks may
be listed in sequence w,,...,w, so that the letters at the origin increase i, <i, <...<i.
Then for all k< j the word w; does not contain the letter {,. However, the letters that do

not belong to the set {i,....,i, } (and were therefore associated with null case) may occur
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in any of the closed walks. Finally, some or all of the words may possibly be empty. The
fact that W(w j) is the weight of the walk brings us to the expression in the statement of
the theorem. QED.

In the event that n= N, then ey(@,,...,wy ) =det(I/(1 - A)) and the theorem
generates the sequences found in Theorem 2.2.3, whereas if n =1, then the theorem says
that ¢, (@,,...,w, ) = tr(1/(1- A)) is the generating function for closed walks. Note that
the involution used to prove the above theorem did not alter the case of any letter, and
therefore it can be applied separately to any » X n principal minor of the walk matrix
I/(1-A). We will appeal to this fact when we prove Theorem 2.4.3 at the end of the

next section.
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SECTION 24 CLOSED WALKS AND CYCLE PRODUCTS

In this section we express walks in terms of cycle products, and vice versa. The
work of this section and the previous section will allow us to give a combinatorial proof
of Theorem 2.4.3 which presents an identity due to Jacobi [Go] concerning the
calculation of any principal minor of the walk matrix I/(I-A). Given letters i,...,i,
consider the »xr principal minor of I/(T—A) that is taken from the rows i,...,i, and the
columns i,...,i.. We know from the proof of Theorem 2.3.1 that the determinant of this
principal minor generates sequences w,...,w, of closed walks such that for all j, the
letters i,...,i;_, do not appear in w;, but the letter i; appears at the origin of w,. In the
proof of Theorem 2.4.3 we shall see that the determinant of this principal minor also
generates stacks of boxes of cycles for which the cycles in the first box must each contain
at least one letter from among i,...,/,. The bijection between these two interpretations is
quite involved, and we first consider it in the special case of a 11 principal minor,
which is the subject of Lemma 2.4.2. In this case the bijection relates closed walks from
i to i with stacks of boxes of cycles for which the first box has one cycle and that cycle
contains the letter /. In Chupter 4 we refer back to Lemma 2.4.2 in order to arrive at a
new quotient formula for the Schur functions s, (51,..., fN)

If we think of the walk matrix I/(L-A) as the inverse of T— A, then we know from

Cramer's rule that

( | ]_dct(l—A)("”
1-AJ; det(I-A)

We showed in the first section of this chapter that the combinatorial approach to the

N
recursion relation Y (=1)"¢y_, (&, &y )P, (& Ex) = 0 also serves to interpret the
r=0
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above equation if we first cross multiply by det(I —A). This time we interpret the above
equation without cross multiplying. This will lead us to Theorem 2.4.1 and Lemima 2.4.2
which cxpress walks in terms of cycle products.

On the right hand side of the above equation, 1/det(I - A) is understood to be the
generating function for stacks of boxes of cycles, and det(1 — A)(ij ) is shorthand for the

cofactor

l-a; -a, O —din
—ay l-ay O
det(I-A)7 = 0
0 0 I; 0 0
Ay 0 [—ayy

The terms of this cofactor can be gotien from det(1— A) by first insisting that in every

term there be a cycle with the edge —a;, and then removing this edge. This cycle may

ji?
therefore be thought of as a path from i to j. Recall that a path from i to j is a walk
from i to j for which all of the vertices are distinct.  In particular, a path from 7 to i is
understood to be the empty walk from 7 to i. We think of det(l - A)(ij) as gencerating

boxes of cycles for whiclt a path from i to j plays the role of onc of the cycles. In the

cxample below, i =8, j=0, and the path from 8 to 6 takes the role of the cycle (168).
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Each box of cycles employs no more than N edges. The edges involved are taken from
— A, and therefore, with the exception of the path, each cycle contributes a sign of —1.
Therefore adding or deleting a cycle from a term in det(I - A)(‘j) changes its sign.

The expression [1/det(I - A)]|det(I - A)”] generates pairs of objects, the first of
which is a stack of boxes of cycles by Theorem 2.1.5, and the second of which is a signed
box of cycles in which a cycle has been replaced by a path from i to j. We now define
an involution on these pairs of objects by which most of them will cancel away. Given a

pair of objects, say that a cycle is a candidate if it is

either a cycle from det(I - A)(U) but not the path from i to j
or a cycle from the stack of boxes of cycles that is disjoint from the

cycles of det(I - A)(ij), including the path from i to j.

If there is any such candidate, then there is a unique candidate with smallest letter. Move
this cycle from the first box to the cofactor, or from the cofactor to the front of the stack
(and therefore the first box, upon adjusting the boxes, as in the example below, where the

cycle is (7)).

00: : @f;:: 3
-y R et el

box
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This action changes the total sign because adding or removing a cycle from det(I - A)(ij )
changes sign, but adding or removing a cycle from I/det(I - A) does not.

The action that we have just defined is reversed upon a second application. If the
action moved a cycle to the cofactor, then afterwards that cycle has the smallest letter
among those in the cofactor. 1t must also overlap any cycle that subsequently ventured
into the first box. This means that the cycle continues to be the candidate of highest
priority. Likewise, if the action moved a cycle to the first box, then it also continues to be
the candidate of highest priority. The action is reversed upon a second application and
therefore it defines a sign reversing weight preserving involution. The involution shows
us how to cancel away any pair of objects having a cycle that is a candidate.

The fixed points of the involution are those pairs of objects for which no cycle is a
candidate. This means that the only cycle in the cofactor is the path from i to j. Any

cycle in the first box of the stack must overlap the path, as in the example below.

()
o | t
B+ frs

We may therefore think of the path as a cycle that is at the front of the stack. Then the
newly created stack is such that the first box consists of one cycle that employs the edge

a;, but from which this edge is removed. We restate this result as the following theorem.

THEOREM 2.4.1  Let K; be the set of stacks of boxes of cycles on 1,...,N witha
total of n+1 places for which there is one cycle in the first box and that cycle has an

edge a;. Then
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(A")ij = i’ ZWA(S)

ji seky

In particular, the theorem holds when i = j, in which case the first box consists of
the cycle with weight a,. The second box must then consist of a single cycle that
contains the letter i. We may cancel away the a; in the first box with the factor 1/a;.
This gives the following interpretation for (A”)_ which proves useful in the chapter on

Schur functions.

LEMMA 2.4.2 Let K, be the set of stacks of boxes of cycles on 1,...,N with a

total of n places for which there is one cycle in the first box and that cycle employs the

letter i. Then

(A")ii = ZWA(S)

sek;

We conclude our interpretation of the equation (I/ I- A))‘,j =
det(I1- A)? /det(I — A) by demonstrating a weight preserving correspondence between
walks from 7 to / and the stacks generated in Lemma 2.4.2. We do this by depicting each
closed walk as a tree-like structure of cycles, and then identifying these cycles with those
of a stack. Afterwards, we modify this weight preserving correspondence to handle the
case i # j. Finally, as promised, we give a combinatorial proof of a more general identity
that is due to Jacobi.

Suppose that we are given a closed walk from i toi. The closed walk pictured

below will help us illustrate the correspondence that we wish to construct.
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If all of the letters of the closed walk are distinct, then we are done. Otherwise, we arrive
at a new object by pinning together places in this walk. This is a procedure that does not
redirect any places, but simply allows us to visualize the closed walk in a different way.
If there are two or more places at which there is the same letter, then we may think of
pinning these places together. In the closed walk that we are considering, if we pin

together the places at which there is the letter 1, then the result looks like

In this way the closed walk from 1 to 1 is thought of as a sequence of closed walks which
share an origin. The letter at this origin is 1, and it is the sole appearance of this letter in
each of the closed walks. The walks are arranged in the plane from left to right,
clockwise around the origin. In creating such a visualization we say that we are pinning
together the places at which there is a letter 1. The original closed walk can be
immediately recovered by removing the pin which holds these places together.

Starting with the original walk, let i be the letter at the origin Q. Let
Q+r,,Q+r,, ....0+r, be the places, in order, at which the letter i appears. Pin

together these places. This allows us to visualize from left to right a sequence of closed
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walks from 7 to i as in the picture above. As we remarked, each of these closed walks
has only one occurrence of the letter 7, and that is at the origin.

In general, suppose that by pinning together places we created a closed walk W
from j to j. Given such a walk, assume that the unique occurrence of j in the walk is at
the origin R. We describe a procedure for pinning together places in this walk and for
defining a function y that maps W into a cycle w(W) with origin R. If the walk W is
a cycle, then let y(W)be this cycle with origin R, and do nothing. Otherwise, find the
first place at which there is a letter which occurs more than once in this closed walk. If

the letter is j,, thenlet R+r, ,R+ T LR+ Fis be the places in this closed walk at

AL
which j occurs. Then find the first place after R+r,  in which there is a letter which
occurs more than once. If the letter is j,, then let the places be R +r jzl,R +7,

~»R+r, . Continue in this way until all of the places of the closed walk are exhausted.

Then pin together the places R+r, ,R+r,,, o R+, and pin together the places

AN

R+r. and so on.

.Izl’

For each letter j, the places R+r, ,R+7,,,....,R+r, arepinned together. This

R+ rios R Vi o
means that we visualize, from lelt to right, a sequence of closed walks that share an origin
at which there is a letter j,. Note that each of these walks has exactly one occurrence of
Ji» and that is at the origin. If we were to equate places that are pinned together, then we
would see that the sequences of closed walks are organized, from left to right, around a
cycle w(W). This cycle contains the letters j,, j,,..., j;»-.., among others, and we say that
it has origin R. In the example below there is such a cycle (12) for which the letter at the
origin is 1 and j, =2, and another such cycle (13468) for which the letter at the origin is

land j, =3, j, =4, j,=6,and j, =9.
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In the example above, all of the resulting closed walks are cycles except for

3 —4—5—2—5—3,and applying the procedure to this cycle gives

In general, if we keep applying the same procedure to the closed walks that result, then
ultimately there is no walk in which a letter occurs more than once. If the places that are
pinned together are not yet equated, then we can recover the original closed walk without
difficulty, which can done by simply removing the pins. If we equate places that are
pinned together, then we are left with a tree-like structure of cycles, which we call a cycle
tree. There are two restrictions on the cycles of a cycle tree that are a consequence of the
construction. These restrictions are best understood in terms of subtrees. Each cycle
arose as a cycle C uniquely identified with a closed walk ™ (C), and may therefore be
identified with a cycle subtree T that was constructed by pinning together places from
that walk. The first condition on the cycles of the cycle tree is that if r is the letter at the

origin R of a cycle C, then this is the unique occurrence of r in the corresponding
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subtree 7. "T'he sccond condition is that if the letter r occurs ata place R, and there is a
cycle in which R, precedes R,, then r does not occur in any subtree whose origin is R,.

As we already remarked, introducing pins does not redirect any places and does not
affect their weight. Therefore the closed walk may be immediately recovered by
removing all of the pins.

The object that we have constructed from the closed walk has the same weight that
it would have if we broke it apart into its cycles. We now show how to list out these
cycles in such a way that they form the desired stack. First of all, equate places that are
pinned together, so that the cycles are well defined. Then write out the cycles as a

sequence, from left to right, observing the following rules.

i) write C to the left of all other cycles in the corresponding
subtree T.

ii) if the origins of T, and T, belong to the same cycle, and T appears
the left of T, then write C to the right of C”.

These rules determine a total order on the cycles that allows us to determine, given any
two cycles, which we must write to the left. It is a total order because exactly one of the
rules must apply, and the rules do not interfere with each other, but both are transitive.
Therefore the rules determine a well defined way of writing out the cycles in a sequence.
With respect to the example we have been considering, this gives the following sequence

of cycles.

omac oJoXe e
(56 g ee a
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As we have seen in Section 1.3, there is a canonical way of presenting any such sequence
of cycles as a stack of boxes of cycles. Introduction of boxes does not affect the fact that
a cycle is written to the left of all cycles located outwards from it in the cycle tree because
any two such cycles C and C’ must be separated by a sequence of cycles
C=D,,D,,...,D, =C’ for which D, and D,,, always overlap. In particular, C and C’
must be in different boxes. Recall the closed walk from i to i and origin Q that
corresponds to the entire cycle tree. Then the cycle from the cycle tree that is the

rightmost among those with letter i is the unique cycle in the first box.

S )i el 2l

This gives us a stack of boxes of cycles for which the first box consists of a single

cycle that includes the letter i. This is the kind of stack described in Lemma 2.4.2, and
we see that every cycle tree yields a different stack. We now show that we can recover
the cycle tree from the stack, and that every such stack yields a different cycle tree. In

order to do this, we first define a new way of removing cycles from the stack.

Given a cycle C from a sequence, we say that to push back C is to remove from
the sequence C and all of the cycles C’ that are separated fromn C by a sequence of
cycles C = D,,D,,...,D, = C’ for which D, and D,,, always overlap. In particular, we
may push back several cycles C,,...,C,, and regardless of the order in which we do this,
we find that ultimately the same sequence of cycles remains.

In order to reconstruct the tree, we assuimne that we know the letter i. We first

recover the order of the cycles which contain this letter. If they are located from C,,...,C,
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left to right in the sequence, then we know that they should be positioned from right to
left in the cycle subtree. We want to find out which cycles belong to each of the
corresponding subtrees. Before we consider the general case, we first consider the
example that we have been working with. The cycle with 1 that is rightmost in the

sequence depicted above is (12). If we push this cycle to the right, we get the stacks

Sirst

box

and

© © O\ @)
O, g% 2
O || @ B BIOW

The cycles that belong to the stacks with (12) and (13468) in their first boxes are the

cycles that belong to the corresponding subtrees. The cycle (25) is in the same subtree as
(12) and must lie outward of it. As for the stack that starts with (13468), find the
rightmost cycle that contains the letter 3, and push it back. Then find the next rightmost

cycle with the letter 3, and push it back, and so on, until all of the 3's are exhausted.

Sirst

first o box
box
(4) (5Y s

box




Then find the rightmost cycle that contains the letter 4, and push it back, and then the
next rightmost, if any, and so on. Proceeding in this way, we scparate the cycles of the

stack into the following stacks with the following order.

Jirst Jirst Jirst Jirst
box box box box

In this way we can tell which cycles belong to which cycle subtrees and the order in
which these subtrees appear in the cycle trec.

In general, in order to recover a cycle tree from a stack, we show, given a cycle
from the stack, which cycles belong to the corresponding subtree. This information is
sufficient to reconstruct the cycle tree. Assume that we know which cycles in the stack
belong to the subtree T, that corresponds to D. These cycles form a subsequence w), of
the stack which we may also think of as a stack. Let D have origin R and letters
JoseosJey 8t RyR+1,...,R+£~1, respectively. In order to recover the subtrees with
origin at R+1, find the cycles in w), that have the letter j. Push back the rightmost of
these cycles, and the next rightmost, and so on. The resulting stacks correspond to the
subtrees associated with each of these cycles. In the stack that remains, find the cycles
that have the letter j,, and proceed in a similar way, and so on with all of the letters
Jase-sJoey- This recovers the order of the subtrees, from left to right, that come out of the
cycle D, and the cycles which belong to them. In general, this mecans that our procedure
yields a cycle tree, and one with the same weight as the stack. Furthermore, this recovers
the cycle tree that we want because given a subtree T, any cycle in it must have been

removed from the stack any time D was pushed back. In particular, any such cycle must
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have been 1o the right of D in the stack. As this is so for all D, then we know that we
are reversing the effects of the algorithm and recovering the original cycle tree.

This shows that there is a weight preserving correspondence between the stacks of
Lemma 2.4.2 and cycle trees. Likewise, we have shown that every cycle tree corresponds
to a closed walk. Taken together these two correspondences determine a correspondence
between the desired stacks and closed walks in the case when { = j.

When i # j, we remark that the same algorithm establishes a weight preserving
correspondence between walks from { to j and the stacks described in Theorem 2.4.1.
Adding an edge a;; to the end of such a walk yields a closed walk from i to {. The
algorithm described above folds together this closed walk in such a way that the edge a;
belongs to the rightmost cycle with the letter i. The algorithm then takes this cycle and
makes it the unique cycle in the first box of a stack. This cycle has the edge a; and
therefore the stack is of the kind described in Theorem 2.4.1. These instructions may be
reversed, and this recovers the walk from { to j. This modification of the algorithm that
interprets the equation in Lemma 2.4.2 therefore yields a combinatorial interpretation of
the equation in Theorem 2.4.1.

We have shown how to express walks in terms of cycle products. We want to
generalize this result, as promised, to prove our next result, Theorem 2.4.3. But first, we
show how to express cycle products in terms of closed walks. For this we make use of
the notion of pushing back a cycle C from a stack w, which we defined above.

Suppose that we are given a stack w. We use induction to express w as a sequence
of closed walks ViV peeea Ve Let i, be the smallest letter in w and let C,.1 be the first
cycle in w with that letter. Push back C, in w. This describes w as a sequence
w=wly, where 1, 1s the sequence of cycles that were pushed back along with €, , and

i

w; is the sequence of cycles that remains. Note that C, is by definition the only cycle in

the first box of 1,. Let v; be the closed walk from i, to i that corresponds to #,. In



89

general, suppose that we have expressed w as the product of stacks w=w ol s
where the letters i;...,i; , do not appear in w;_,, and each u, corresponds to a closed
walk v, in which none of the letters i,...,i,_; appear. Let i; be the smallest letter in w;_,
and let C; be the first cycle in w;_, with that letter. Push back C, in w,_,. This
describes w;_; as a sequencew; , = w;i, where U, is the unique sequence of cycles that
were pushed back along with C‘.j, and w; is the unique sequence of cycles that remains.
By definition C,.} is the only cycle in the first box of 4, , and therefore there is a unique
closed walk v from i; to i; that corresponds to Uy - This walk does not employ any of
the letters i,...,J;_;, and the stack w; does not employ any of the letters i,...,i;. By
induction we conclude that this procedure expresses w as a sequence of closed walks

o>V, oo, ina unique way. The walk v, does not contain any of the letters i,...,i;_;,
and therefore the sequence of closed walks is the same as described in Theorem 2.2.3 and
Theorem 2.3.1 (when n= N). The stack w can be recovered from the walks

V,»V, s>V, Dy concatenating the sequences i, ,l; ,...,U; .

For example, the stack w= Il (12)(3)(45) Il (267)(13)(48) Il (12)(34) Il gives rise to
stacks w = 11 (12) I (13)(267) 11 (12)(34) ll, uy= 11 (3) Il, u,= 11 (45) Il (48) li, that by Lemma
2.4.2 correspond to walks from 1 to 1, 3 to 3, and 4 to 4, respectively.

Another correspondence between stacks and the sequences of closed walks referred
to above can be defined by expressing each in terms of a table as we did in Theorem 2.2.2
and Theorem 2.2.3. We do not know, however, what is the relationship between this
correspondence and the one described above.

Finally, we state and prove the generalization due to Jacobi [Go], that we mentioned

at the start of this section.

THEOREM 2.4.3  Divide the letters 1,...,N into two disjoint sequences i <...<i,

and j, <..< jy_,. Let (I/(1- A))x,.....: be the principal minor that corresponds to the rows
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Ijy.esl, and columns i,...,i, of I/(I-A). Let (I-A) ioiv, D€ the principal minor that

corresponds to the rows j,..., jy_, and columns j,,...,jy_, of (I—=A). Then

det(I/(I-A))

We give a bijective proof. In order to do this, we first identify the right hand side of
the above equation with pairs of weighted objects generated by 1/det(I— A) and

. The first object is a stack of boxes of cycles, and the second object is a

iy

det(I-A),
box of cycles with edges from — A that does not employ any of the letters i,,...,i,. We
perform an involution on these pairs that is in the same spirit as the ones that we used to

prove Theorem 2.1.5 and Lemma 2.4.2. We say that a cycle is a candidate if it is

either a cycle from det(I-A), .~
or a cycle from the stack of boxes of cycles that is disjoint from the
cycles of det(I-A), . and does not contain any of the letters i,...,i,.

If there is any such candidate, then there is a unique candidate with smallest letter. Move
this cycle from the first box to the cofactor, or from the cofactor to the front of the stack.
The fixed points are those pairs for which there are no cycles in the box of cycles that
corresponds to det(I—A) jiiv.,» and any cycle in the first box of the stack must contain
one of the letters i,...,i,.

We remarked at the end of Theorem 2.3.1 that the proof of that theorem shows that
det(I/(I - A))‘.l ''''' ; is a generating function for sequences of closed walks w;,...,w; on the
letters 1,...,N such that for all j, w, 1s a closed walk from i; to #; with no occurrence of
any of the letters i,...,i;_,. It therefore remains for us to present a weight preserving

correspondence between these sequences of walks and the stacks that are the fixed points

of the involution defined above. But this correspondence is practically the same as the
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one described just before the statement of this theorem, by which a stack may be
expressed as a sequence of closed walks, Given such astack s, Find the fiest, il any,
cycle C, with the letier i, and push it back. This describes s as a sequence s = sy,
where u; is the sequence of cycles that were pushed back along with C,, and s, is the
sequence of cycles that remains. Note that C; is by definition the only cycle in the first
box of 4. Let v, be the closed walk from i to j that corresponds to u; . In general,
suppose that we have expressed s as the product of stacks s = Sjoath s where the
letters i,,...,ij_1 do not appear in $i 1 and cach u, corresponds 1o a closed walk v, in
which nonce of the letters ip,...,7,, appear. Let (-',I be the first cycle in s with the letter
i;. Push back C"; in s;_,. This describes s;_, as a sequences; | = s;1, where u, is the
unique sequence of cycles thal were pushed back along with Ci/’ and s, is the unique
sequence of cycles that remains. By definition Ci/ is the only cycle in the first box of U,
and therefore there is a unique closed walk v, from i; to i; that corresponds to Uy - This
walk does not employ any of the letters i,...,i;_, and the stack s; does not employ any of
the letters i,...,i;. By induction we conclude that this procedure expresses s as a
sequence of closed walks v, ,v, ,...,v, in a unique way. The walk v, does not contain
any of the letters i,...,i i1 and therefore the sequence of closed walks is the same as
described in Theorem 2.2.3 and Theorem 2.3.1 (when #=N). As in the discussion
before this theorem, the stack s can be recovered from the walks ViV e Vs by
concatenating the sequences &, ,u, ,...,4; . This demonstrates the correspondence and

proves the theorem. QED



CHAPTER 3
FORGOTTEN AND MONOMIAL SYMMETRIC FUNCTIONS

Our object in this chapter is to evaluate forgotten symmetric functions f, and
monomial symmetric functions m, at the eigenvalues &,,...,&, of an arbitrary N X N
matrix A. In the previous chapter we did this for the bases of power, elementary, and
homogeneous symmetric functions. In principle it is possible to evaluate any symmetric
function b(,....,£, ) of degree n by expressing it in terms of one of these bases. For
example, we may write b = Z:V/1 (b)- p, and evaluate the power symmetric functions at
&,,...s€Ey. Moreover, this lu.:;-équation may be compared with the expression
b= %Z"CAB(/I)I)/1 from Section 1.1, where B is the character associated with
b= chel}j by the Frobenius characteristic map, and B(/l) is its value at the conjugacy
class of type A and size C,. It becomes apparent that V, (b) = %B(l). We may rightly
say, from an algebraic point of view, that our work is done. From'a combinatorial point
of view, however, it has just begun. In this chapter we use interpretations of the character

tables (ch™(£,)(4)),

functions and the monomial symmetric functions. This brings out unexpected but

and (ch—l(m#)(). ));t,lHl to evaluate the forgotten symmetric
satisfying descriptions of f,(£,....,€,) in terms of Lyndon words and of m,(&,.,...,&,) in
terms of the determinant of the walk matrix. These descriptions also reaffirm the central
location of the power symmietric functions (and closed walks) within the combinatorics of
the symmetric functions. Indeed, we devote the first section of this chapter to showing
that Littlewood's formula for expressing b(él,..., '3 N) in terms of immanants is equivalent

to evaluating the equation b = L‘ Y.C.B(A)p, at &,...E.
2F Y
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SECTION 3.1 LITTLEWOOD'S FORMULA

One of the themes of Littlewood's book The Theory of Group Characters is that of

the immanant of a matrix [L, 81-121]. In the context of group characters this seems to be
a natural generalization of the concept of the determinant of a matrix. Of interest to us is
a formula from his book by which a symmetric function b(él,...,é N) may be expressed as
the sum of immanants. We present a weight preserving bijection between the terms of
this formula and those of the expression b(£,,&,,...&,) = —1% Y B(0)py (&1, Epne by ),
thereby showing that the two are equivalent. We also discuss. :lf::ﬁdifficulty of working
with the immanant of a matrix. It is fair to say that the immanant has yet to compare with
the determinant in mathematical importance, even though the latter is but a special case
of the former.

The determinant of a matrix is certainly among the most useful of mathematical
concepts. We have seen the special role that it plays in combinatorics. The determinant
lists out all permutations with their sign. But is it meaningful to replace the sign function
with some other function 7 As noted in Section 1.1, the sign function is an irreducible
character of the symmetric group. With this in mind, given an N x N matrix A we may

consider generalizing

detA = ngn(o)am(l)amz)...aN”(N)

geSy
by replacing x" (0) = sgn(o) with any irreducible character 2(0), A = N. Inthis

way we arrive at the immanant

_ A
ImmzlA = Zl (G)‘lm(l)aza(z)'"“Na(N)'

oeSy
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We shall see, however, that in the results that we consider the combinatorics of

immanants has nothing to do with the irreducible characters, and therefore we allow

immanants to be defined most generally as Imm, A= ZB(O')am(l)am(z)...aNU( ny» Where
geSy

B(0o) is any character or any function constant on conjugacy classes.

Littlewood used the immanant as a unifying concept. By considering the case when

the matrix A is defined to be

D 1
Dy D 2
3
7, = Py D 1%}
N-1
\P~v Pn-1 Pn-2 = = D

he arrived at the formulation Nls, = Imm , Z,. This nevertheless is just a device for
writing s, = L‘ ZS: 2*(0)p,. More interesting are his results about "immanants of
complementary cgil;(ial minors", especially those that allow for "repetitions of rows or
columns” [L, 118-121]. We relate his observations, but we recast them in our own
language.

Given a word w = x,---x,, define the word matrix A, to be (a,m )15;./5..' For

example, if the word is 3552, then

Aysy =

In particular, note that if the word is 12.--n, then the word matrixis A,, , = (a,.j)ls. <
i,fj<n
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Let the symmetric function b and the character B be associated by the Frobenius
characteristic map b = ch(B). Recall from Section 1.1 the cquation b = % Y B(o)p,,
and the convention that the power symmetric function p, is indexed by the (Z:E;Z:Ie
structure of the permutation o. From this equation we derive the following formula
which constitutes Theorem 11 of three theorems that Littlewood | L, 118-121] gives

concerning immanants. He states the formula for the case when b =5, and B = x*. The

proof of the general case is no more demanding, but of interest to us.
THEOREM 3.1.1 Let b =ch(B) be a symmetric function of degree n. Then

b(€,&,,...Ey) = — D Imm, A,

1
n: weN"

To prove this theorem we show that ZImmB A, and ZB(O’)[)U(&,J,‘Z,...,J,‘N)
generate the same terms (the same objects w}vte}l:the same wei gh(tI:; Each term in
ZB(O’)[)U(J,‘,,EZ,...,EN) can be gotten by fixing ¢ and a term from p, (&, &,,....&, ) and
zf::‘ociating with them the number B(o). Align the cycles of o with the closed walks
from the term in p,(&,,&,,..., €y ) so that the smallest letter in each cycle is aligned with
the origin of the respective closed walk. Each edge of a cycle corresponds to an edge of a
walk and vice versa. The edge i — o(i) of the cycles may be associated with the
(i ,o(i )) th position in a permutation matrix. Place in these positions the corresponding
edges from the walks, as in Figure 2. Note that there is always but one nonzero entry Ay,
in the ith column of the matrix and that kk,---k, =11,---[,. If welet kk,---k, be the
word w, then the matrix represents the term from Imm, A that depends on o (and w)
and is associated with B(0). Conversely, there is one term in Zlmm,J A, forevery o

weN"

and w and it is associated with B(o). From o and w we can recover the term in
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~

dg3 Qg dgg  dgy
\ 433 a3 d3g 433

Figure 2: A bijection equating D B(0)p4(&,....&y) and Y ImmgA, .

oeS, weN"

At the top is a term from ZB(a)pa(él,...,éN) consisting of closed walks
3>5>8—>2->3and 2 > 3 — 2 that are labelled by the permutation o with cycles
154535 Tand 2 - 5— 2. Below is the corresponding term from ZImmBAw ,
likewise indexed by o. Asssociated to both terms is B(0).
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Po(&.Esse. 5,,,) Therefore ZlmmBA = Y, B(0)P,(&,,&,5--,Ey ). The fact that

ges"

b(&,E,,...E ZB pa éjl,éjz, .£,) proves the theorem. QED.

aeS
We may use L1ttlewood s formula to calculate some examples. When b =¢,, then

B(0) = " (0) = sgn(0) and therefore the immanant lmmzl, A, is just the determinant
detA . If two columns of a matrix are the same, then the determinant is zero. Therefore
detA, =0 only when w, = x,x,---x, consists of letters that are all distinct. There are n!
words w of length n that consist of the letters x,,x,,...,x,. Note that for any such word
w the rows and columns of A, can be permuted to get A, . The number of rows and the
number of columns permuted is the same so that detA, =detA, . Therefore the sum of
the immanants of all n! word matrices equals nl-detA, where detA is the generating
function of boxes of cycles that employ the letters x,,x,,...,x,. And so in general

e, (Ereny)= — Z Imim .~ ., generates boxes of cycles that employ 7 letters taken
from 1,...,N. -

Another example to consider is when b is the homogeneous symmetric function
h,(,....Ey), in which case B(o)=x"(c)=1. Then perA= Immx, A=
Zam(l)aw(z)...aw(n) is known as the permanent of A and is a generating function for
permutations o€ S,. If two words w and w’ are rearrangements of each other, then
permuting rows and columns shows that perA,, =perA ,. There are nl/m !m,!--m,!
ways to rearrange a word w =1"2™-..N™ of length n. This gives an identity which was

the subject of a paper by Vere-Jones in 1984 [VI][BR, 313] (upon replacing

Zh EivenEy) with det(I- A) and (q,) . with (a,3,) ).

THEOREM 3.1.2  h,(,....6y)= D, —1—-perAw.
w=1mgm2.. ey Y !I712 I ‘my, !
m+..tmy=n



98

As we know from Theorem 2.2.2, hn(ﬁ,,...,éN) is a generating function of
circuits, and we now show how this interpretation unfolds from the above identity. Let
=1M2" . N™ = x X, i =
w=172".N™ = x,x,--x,. If 0 and 7 are permutations, then @, ,,d, ;)" @,g(s) =
@ 1y@ar(2)" Aor(n I and only if the letter x,,, always equals the letter x,, . There are

exactly m !m,!---my ! permutations that give the same term @, ,,,@, ;) @5, 3 O.

na(n)

Therefore 1/m, !m,!---my!- per A, generates one term 4, ,\d, -+ @,4, fOr €ach distinct

na(n)

rearrangement X, X,y Xy, Of X,.x,--x,. Hence h,(€,....&y) is the generating

a(1)
function of circuits.

In general, if words w and w’ are rearrangements of each other, then permuting
rows and columns shows that Imm, A =Imm,A ,. The fact that a word

w=1"2"...N™ of length n can be rearranged in n!/m !m,!---m,! ways means that

1
D(&s....6y) = —1 A,.
)(51 éN) w=1m12mzz..‘Nm~ ml'mz'mN' M

m+..tmy=n

Any algebraic relation that relates Schur functions (and therefore symmetric functions in
general) is satisfied by the corresponding sequences of immanants. Of course, if the
symmetric functions are all in the same variables &,.,...,&,,, then the same matrix A must
underlie all of the sequences. We may then think of the relation as being satisfied by the
immanants themselves if we contrive the appropriate rule for their multiplication. This is
Littlewood's Theorem II concerning immanants. It may also be stated in the following

way.

THEOREM 3.1.3  Fixan NXN matrix A. Fix an element F(y,,...,,) of the
fieldC(y,,...,y,). Forall i, 1<i<r, let b(x,,...,xy) be a symmetric function of degree

d,<N,andlet b, =ch(B,). Then F(b,,...,b,)=0 if and only if
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1 1

F —————I———————'-lmm,,l Aw, ey PP

wermamyew 1y L Loy | weimigmr.yew B Lty ey |
my+..tmy=d; . +my=d,

Imm, A, |=0.

Goulden and Jackson [GJ] have observed that applying this theorem to the relation
i(—l)’e,hn_, =0 yields the MacMahon Master theorem.

~ Rather than consider the entire sequence, we may consider the "leading terms",
that is, those immanants for which all m,!=1. We write this as ZImm s A, , where N2
is the set of all words w € N" whose letters are strictly i11creasi11£.5N§uppose that

bb,---b, = ¢ are symmetric functions in the variables &,,...,§, , that the b, have degree

n, and ¢ has degree n, and that b, =ch(B,), ¢ =ch(C). Then

H Imm, A = 2 Imm A

wyw, w, NG weN7%
g
wi €N/

and we may define the multiplication

Y Imm, A, x -+ X > Imm, A, [Timm, A, =Y Imm A,
weN2 weNZY wyw,y-w, NG weN%g
w,eNT

accordingly. Here N is the set of words w € N” with all letters distinct, and therefore
ww,---w, € N} and w; € N7 indicate that the w; do not share any letters. With

multiplication defined in this way and addition defined in the usual way the sums
Elmm s A, satisfy the same relations as the corresponding symmetric functions b.

n
weN7,

This is Litttewood's Theorem I concerning immanants [L, 118-121].
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THEOREM 3.1.4  Fixan NxN matrix A. Fix an element F(y,,...,y,) of the
field C (y,,...,y,). Forall i, 1<i<r, let bi(x,....xy ) be a symmetric function of degree

d, <N, andlet b, =ch(B,). Then F(b,,...,b)=0 if and only if

F( ZImmBl A,,..., ZImmB, Aw] =0

u
weNJ weNr

with multiplication in the latter relation defined as described above.

Littlewood himself shows that applying this theorem to the equation
2(—1)'e,h,,_, =0 yields a recursion relation of Muir's that dates back to 1897. In our

r=0
notation the recursion relation has the form

2'(—1)’[ ZdetAwX ZperAwJ =0

= r A-r
r=0 weN7 weNT

More recently, Chu [C][BR, 314] uses the inclusion-exclusion principle to prove an
identity by which per A can be expanded in terms of determinants of the principal

submatrices of A. But his formula may be gotten by applying Littlewood's theorem to

the identity h = det(el_‘.+ i)l e and in our notation it looks like
<i,j<n

Y detA, D detA, Y detA,

weN. weN2 weN~

1 Y detA,
erA, = weN: )

w;}’ " . Ydeta,

weNZ
1 D detA,

weNL
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Likewise, he proves an identity by which detA can be expanded in terms of permanents
of the principal submatrices of A. This may be gotten by applying Littlewood's theorem

to the equation ¢, = dct(hl < In our notation it looks like

—itj )xsi.j

Zper A, Zper A, Zper A,
weNL weN? weNg
1 ZN‘lper A,
wgzdet A = ( z perA,
weN?
1 2 perA,,
weNL

These are both special cases of a recent theorem of Goulden and Jackson's [GJ], which is
equal to applying Littlewood's theorem to the Jacobi-Trudi identity s, = det(ha,_,.ﬂ. )XS. <
4 L)Ssn

as they themselves submit. This gives

THEOREM 3.1.5 Y Imm , A, = det Y perA,,

n Aj~ivj
weN< weN 18i,j<n

The dual identity s,, = det(el,_ i+j) yields an analogous equation in terms of
i n

1<i,jS
determinants [GJ].

These several examples attest to the power of Theorem 3.1.1. Butin a sense the
theorem suggests that immanants are not interesting mathematical objects. If the
multiplication of immanants parallels that of the Schur functions, then the question is, are
the immanants easier to multiply, and are they interesting in their own right ?
Multiplication of Schur functions is best understood by using the well documented

Littlewood-Richardson's rule to expand the product itself in terms of Schur functions. If

the Schur functions are thought of as generating functions for column strict tableaux, then
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this rule has a natural combinatorial interpretation. It would be very difficult to arrive at
this rule by considering immanants because they depend on the irreducible characters.
There are problems with the various ways of interpreting these characters, and this makes
for difficulties in trying to multiply them directly. For these reasons formulas relating
immanants (with the multiplication as defined above) are best understood as formulas
relating Schur functions.

Are immanants interesting in their own right 7 In sharp contrast with the
determinant, they are peripheral to almost every branch of mathematics. Brualdi and
Ryser's book [BR] contains a chapter on the combinatorics of the permanent. They do
show that the relation between the problem of calculating perM, m; =1 or 0, and of
deciding whether per M = 0 is an important one in complexity theory. But ultimately,
the most interesting question is the original one: why is the determinant such a central
concept in mathematics?

Indeed, determinants and permanents are the only immanants in the several
identities that we have just considered, with the exception of that given by Goulden and
Jackson. At the end of Section 4.3 we present a bijective proof of the latter identity. We
will see that this proof is essentially the same as that of the character equation
o) = 2 n (a)K;“A where £, = ch(n“), and that the matrix A hardly figures.

V&;ll:a"t makes the combinatorics of the symmetric functions of £,,...,&, interesting
as opposed to that of the immanants of A is the difference between Littlewood's
Theorems I and II. That is, the symmetric functions of éjl,...,éjN capture the
combinatorics of not only the matrix A, but every word matrix A, as well. This is
made relevant by the four different interpretations for #,(&,,...,£, ) that we presented in
the previous chapter. If we restrict our attention to the terms in which no letters are
repeated, then all four interpretations are trivialized (much as if we had set a; =0, i # ),

and we are left with per A. For example, recall that h,,(é,‘,,...,éj,v) is a generating function
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for multisets of Lyndon words. 1f we only consider terms in which no letters are
repeated, then the Lyndon words are cycles and the multisets are sets of disjoint cycles.
The combinatorics has disappeared, even though from an algebraic point of view per A is
always more general than perA,,.

Littlewood's formula allows us to evaluate a symmetric function at its
eigenvalues, provided that we know the values taken by the corresponding character. By
this approach we are able to find original and satisfying interpretations for the forgotten
symmetric functions f,(&,,...,£y) and the monomial symmetric functions m, (&reenEy )
However, we choose to work with the equation b = —]—' ZB(O')I)(: instead of with

‘ ges,

Littlewood's formula. The two are combinatorially equivalent, but we find the former

easier to work with.
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SECTION 3.2 CHARACTER TABLES

We have seen that the power symmetric basis is a sensible basis in which to
expand a symmetric function b =ch(B). It may be argued that the values B(0) in the
expansion b =i' ZB(O’) P, capture the combinatorics inherent in some action of which
the character B i: ilS;e trace. However, B need not be a character in the true sense of the
word. Indeed, B is a character if and only if b can be expressed as a nonnegative linear
combination of Schur functions. Otherwise B is said to be a virtual character and does
not correspond to any representation, as we saw in Section 1.1. This is the situation when
b is f, or m,. As we shall see, it is still useful to express b as _ITZB(O-)I)G’ and in
the two sections to follow we do this for f, (£,,....£y ) and m, (él,ieés,v) However, in
order to calculate the values B(0) we exploit the combinatorics of the ring of symmetric
functions. In this section we present an interpretation of (ch'l £, )(u) and (ch™'m, 1)
that is due to Egecioglu and Remmel [ER2] and then modify it for our purposes.

We first prove a helpful lemma which expresses character tables as transition
matrices. Let {Bl}“nbe a complete set of linearly independent class functions, let
{bl } 1., ¢ the corresponding basis b, = ch(B‘) and let {51} be the dual basis of

A»n

{b/1 } 1., With respect to the inner product of A, that is <b1,13“> =68,

- H = h ) = h h
LEMMA 3.2.1  B*(A) M(p,b)m where p, ;zw(p,b)mby.
In Section 1.1 we defined the inner product of A, by setting (Spsp> = 61}‘. We
remarked that p, = C—" p, where C, is the size of the conjugacy class indexed by the
n!

partition A . It follows that
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Recall that {f,}, and {e,}, aredual bascs,asarc {m,}, —and{h}, . Therefore
(ch™ £, )(1) = M(p,e), , and (ch™ m, (1) = M(p,h), -

We start with an interpretation of (ch™ fl)(,u) that is due to Egecioglu in
Remmel [ER2]. They proved that their interpretation is correct by showing that it

ron—r*

n
. o . . -1 e . . .
satisfies the recursion relation ne, = Z(—l)' p.e Their construction mirrors the
r=1

determinantal formula

e, L0 .0
2e, ¢ I
pn = 333 e’l el ." O :ZM(I)se),, Vev
‘ : Co v '
nen en-—l en—’l el

This formula is gotten by writing out the relations ie; = 2(_1)r-1 p.e._, forall 1<i<n,
and then solving them for p,. It may be compared withrtzlie determinantal formula that
we referred to in Section 1.1 in constructing a row of a brick tabloid. The factor ie, in the
first column may be attributed to the leftmost brick in that row. We may think of the

leftmost brick (or as Egecioglu and Remmel do, the rightmost) as having a distinguished

square. As in the case of brick tabloids, consider a sequence of rows of lengths
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Hys-ws Ky filled with bricks of lengths 4,,...,4,,,, but let the rightmost brick in each
row have a distinguished square. The resulting objects are weighted brick tabloids of
shape 1t and type 1. Let C(BM) be the number of such tabloids. In the expansion of
the determinant each brick corresponds to a cycle and has the sign of a cycle. Therefore
the total sign is sgn(A). We conclude that ch™(f, )(0) = sgn(/l)C(Bl‘G) (here &
signifies both a permutation and its cycle structure). [ER2]

Likewise, an interpretation for the character table of ch™ m, can be gotten by

examining the determinant

Bo1 0 0
2h, h 1 o

p, = (-)"'Bh ko 0| =Y M(p.h), h,
nh, h_, h_, . h,

Suppose n = 1,. The sign (—1)*"" is that which a row of length y, would have if it were
acycle. The total sign is sgn(4)sgn(p) and equals (—1)" where 7 is the number of gaps
between bricks. The value of the character ch™ m, at o is sgn(4)sgn(o) C(Bl_g). [ER2]
We now recast the definition of weighted brick tabloid to suit our purposes in the
sections to follow. Let there be a sequence of walkalongs C,,...,C o(u) ON @ single letter O,
a letter which we never draw because it occurs at every place. Forall i, 1<i<£(u), let
C; have an origin and length p,. In the walkalongs, let every place have either upper or
lower case. Consider all distinct ways of ascribing case to the places such that the
circular distances separating the upper case places, as defined in Section 1.3, are given by
Ayseesdyqy. We call the resulting objects circular brick tabloids (this resembles a
construction used by Stembridge) [St2]. If we think of the places with upper case as

starts of bricks, then we see that there is a correspondence between circular brick tabloids
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and weighted brick tabloids. Each circle becomes a row, and the origin of each
walkalong becomes the distinguished square in the row. The order of the squares of the
row from left to right matches the usual clockwise order of the places of the walkalong,
as in the example below, where 1 =5542 and 4 =43222111. We see that C(BM) gives

the number of circular brick tabloids of shape p and type A.

upper upper

PR

upper

upper

We do not actually draw bricks in the circular brick tabloids because we want to
focus our attention on the places at the start of each brick, that is, the places with upper
case. It is helpful, however, to keep in mind that weighted brick tabloids can be thought
of as the circular analogue of brick tabloids. Itis typical to identify the rows of a
weighted brick tabloid with cycles of permutations, in which case the distinguished
square is identified with the smallest letter of the corresponding cycle. Indeed, this is the

case in the sections that follow.
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SECTION 3.3 FORGOTTEN SYMMETRIC FUNCTIONS

This section presents an interpretation of the forgotten symmetric function
fl(ffl,ffz,...éj,\,). The equation f, =l'2(ch"1 fl)(cr)pU and the combinatorial result
n

* o€S§,

(ch™ £, )(o) = sgn(l)C(Bl_a) together yield a formula f, =sgn(A ZC( A a)pa
which allows us to express f, (&,,&,....&y) in terms of multisets of Lyr{:ceison words. This
result is one of the two main results of this thesis. We then arrive at a second
interpretation of f,(&,,£,,...&y) by relating multisets of Lyndon words with sequences
of closed walks.

Recall that at the end of Section 1.3 we introduced the concept of case. In order
to express f,(&,.&,,...€y) in terms of Lyndon words we make use of both upper case
and lower case. If a letter i appears at a place with upper case, then we may think of it as
an upper case letter, and denote it i, whereas if a letter i appears at a place with lower
case, then we may think of it as a lower case letter, and denote it i, as in Figure 3. With
this in mind we denote by N the alphabet made up of upper case and lower case letters

T<-<N<1<--<N. We also use the concept of circular distance that we introduced in

Section 1.3.

THEOREM 3.3.1  Define a; = =a; =a;=a for all letters i, j, i, j€xN. Let
M be the multiset of Lyndon words on 1<---< N <1<---< N with n places such that
every Lyndon word has at least one upper case letter, and the upper case letters are

separated by the circular distances A,,A,,...,A ()" Then

Fa(6iren€y) =sgn(A) 3 W(m).

meM
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This interpretation arises from the equation f,(&,,....& N)=

sgn(/l)-'i—!%C(Bl‘a)pa(ij,,...,ij,,). The function ;C(Bl.c)pc(él,...,é,v) generates
triplets (O’,B;_' a,Pa) where o is a permutation, B, is a circular brick tabloid of shape &
and type A, and P, is a term from p,. Each member of such a triplet may be expressed

as a sequence. Identify o with the sequence of its cycles of lengths 0,,..., 0. Let the

cycles of equal length be ordered so that the later a cycle is listed, the greater its smallest

label. Identify B, , with the sequence of its walkalongs of lengths 0y,..., 0y Identify

P, with the sequence of closed walks of lengths o,,..., Oy Then forall i, 1<i<{(0),
the ith cycle, the ith walkalong, and the ith closed walk all have the same length o©;.

Furthermore, the ith cycle has a smallest label, the ith walkalong has an origin,
and the ith closed walk has an origin. Forall i, 1<i <{(0), match the smallest label
with the origin of the walkalong and with the origin of the walk. This determines an
alignment of the ith cycle, the ith walkalong, and the ith closed walk. It associates each
label of the cycle with a place in the walkalong and a place in the closed walk. Once this
is done it is no longer necessary to distinguish the origin of the walkalong or of the walk
because this information can be recovered from the smallest letter. Consider the example
in Figure 3, where o has cycle type 6433 and A =4222111111. In what follows the
closed walk is to be thought of as a circular walk.

Introduce the alphabet T <---< N <1<---< N and let a; = a; = a; = a for all
1<i,j <n. Each place has upper or lower case as dictated by the circular brick tabloid.
If a vertex k of the circular walk is at a place with upper case, then replace this &£ with & .
This does not affect the weight of the circular walk. The circular brick tabloid may then
be disregarded and we may speak of places of upper and lower case in the circular walk.
The circular distances separating the upper case places are given by the lengths
ARy A () There is a unique way of expressing the resulting circular walk as a

power of a Lyndon word on the new alphabet.
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Figure 3: A bijection expressing f,(&,....,Ey) in terms of multisets of Lyndon words.
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Order the circular walks so that their respective Lyndon words increase from left
to right with respect to the lexicographic order defined in Section 1.3. Order circular
walks that are powers of the same Lyndon word so that the smallest label of the walk
increases from left to right. Given a circular walk, break it apart into the Lyndon words
of which it is a power, as in Lemma 1.3.4. Note that the weight of the circular walk
equals the weight of the product of the resulting Lyndon words. Also, the circular
distances that separate the upper case letters of the circular walk remain unaffected.

Order the resulting Lyndon words from right to left so that the rightmost is the one with
the smallest label, and the others are listed in the order that they appear in the circular
walk. Throughout all of this each place of the walk continues to be identified with a label
of the permutation o.

This results in a sequence of weakly increasing Lyndon words for which the
places are labeled with labels o(1),...,0(n). Each Lyndon word is built from the alphabet
1<--<N <1<-<N and must contain at least one upper case letter. The circular
distances between the upper case letters are given by 4,,4,,...,4 (a)- The weight of the
sequence is the product of the weights of the Lyndon words with the additional
requirement that a; = 4, =a;=a; forall i, j, 1<i,j<N.

We claim that the above map defines a weight preserving correspondence
between all such sequences and the triplets that are generated by

ZC(BLG) pa(él,..., é N). The algorithm is reversible and therefore the inverse of the
r(:z:p exists and the map is one-to-one. For suppose that a sequence of Lyndon words is
given as above. Within each Lyndon word ¢ find the place c; that has the smallest label
k;. Mark those places with labels &; for which k; <k; whenever i< j and £, =¢,.
Suppose that the marked places are c;,c,,...,c, . Starting with any such place c; , walk
along the places of the Lyndon word until the word is traversed. Then walk through the

Lyndon words ¢, ., ,,....¢; ., successively, always starting and ending at the place




that corresponds to ¢, . This converts these Lyndon words into a circular walk adorned
with labels. The smallest of these labels is &; at place ¢; . Then using the places
C;»Cy»e--»C; as Teference points it is possible to read off the sequence of cycles o, the
sequence of walkalongs B, , and the sequence of walks P . This is possible once the
case of the places in every circle of B,  is determined from the case of the corresponding
places in the circular walk.

In summary, two weight preserving maps have been defined. The first maps the
triplets to labeled multisets of Lyndon words with certain additional properties. The
second maps these multisets back to the triplets. Each map reverses the other and
therefore they define a weight preserving correspondence.

Finally, we remark that given a multiset of Lyndon words, its places may be
labeled in exactly n! ways, and the labeling has no bearing on the weight of the multiset.
Removing the labels adds a factor of n! and completes the theorem. QED

Having completed our proof of the theorem, we consider what it has to say about
the limiting cases A= 1"and A =n . If A= 1", then all of the letters are upper case and
the function generates all multisets of Lyndon words with n places, and we have
h,(&.,....Ey), as in Theorem 2.1.4. If A = n, then there is one upper case letter and a
single Lyndon word. The unique letter is taken to be the first and last point of a closed
walk. A walk with such a unique upper case letter can never have rotational symmetry.
Therefore the function generates all closed walks of length » and is sgn(n)p,(&,,...,&y)-

If we set a; =0 for all i # j, then our expression for f, (&,.6,,e. f,,,) should yield
the description of the forgotten symmetric function in terms of brick tabloids that we saw
in Section 1.1. We postpone a demonstration of this, however, until we arrive at a second
interpretation of f,(&,,£,.,...£y ), from which it will be more evident. First we consider

some of the consequences of the relation between £, (&,,&,,...£,) and Lyndon words.
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For all A, the terms of the function £, (£,,&,,...Ey) =sgn(1)f,(£,,&,,...Ey) ate
all positive. We relate these functions to 4, (51,...,§N) , whose terms are also all positive.
Consider multisets of Lyndon words on the alphabet £N. Any such multiset can be
divided into a pair of multisets, the first multiset consisting of Lyndon words that each
have at least one upper case letter, and the second multiset consisting of Lyndon words

that have no upper case letter. Therefore the generating function of the multisets is

DORCACIEN) pIACRNER)

1

(zzsgn f (€. fw)]m

n=0A»n

On the other hand the multisets are generated by the homogeneous symmetric
function evaluated at the eigenvalues of the 2N X 2N matrix ( u) sy The fact that
ije
a;=a;=a;=a: for all letters i, j, i, j €N means that (a,.j)i'jeiN equals the tensor

product A®M where
A®M A A d M bl
RV Y U1

The eigenvalues of M are 2 and 0 and therefore the eigenvalues of A ® M are

28),...,264,0¢,,...,08,,. We note that £,(2¢,.,...,2&,,0,...,0) = ,(2€,,...,2€,).

. TR ool 1
Therefore the generating functionis ) h (2€&,,...,2&, )= = .
¢ Zo’ (26 28) gl—% det(I-2A)

Combining the two interpretations gives the formula

S _ det(I-A)
,.Emznf‘(é"""g") " det(I-2A)
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Also, applying the involution @ gives the formula

det(I-2A)
22sgn -y (&oer ) = Get(I=A)

n=0A1»n

Finally, setting &, = x,,...,€y = x,y gives

33 Fy () = [ [
AT 1-2x,

n=0A4>n i=1

N — .
EZSgn m,_ xl, ,xN)=H1 2%

n=0A>n i=1 1 - xl'

This expression of words on the alphabet N is a factorization, specifically, a
bisection of each word into two words, where the first is a product of Lyndon words, each
having at least one upper case letter, and the second is a product of Lyndon words, each
having no upper case letter. By a theorem from chapter 5, "Factorization of Free
Monoids", of [Lo], itis known that to any bisection of a free monoid is associated a
decomposition of the corresponding free Lie algebra into a direct sum of two
submodules.

A second interpretation for f,(£,,&,,...€,) is gotten in terms of sequences of
closed walks. It follows from an observation about #,(&,...,&, ), whose terms may be
described by multisets of Lyndon words, or alternatively, by certain sequences of walks.
We present a bijection that relates the terms resulting from each of these two descriptions.
This then leads us to a second interpretation of the forgotten symmetric functions
IAGRAS)

Given a multiset of Lyndon words, group them by the first letter in the word, which
is necessarily the smallest letter in the word. In each group, list the Lyndon words in

reverse order, so that the one with the smallest prefix is listed last. But write the letters of
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each Lyndon word in the usual order, so that the word starts with its smallest prefix.
Stringing the Lyndon words together in each group gives a closed walk for each group
because each Lyndon word in the group starts with the same letter. This closed walk
does not include any letters less than the letter at the origin. Conversely, suppose that we
are given a sequence of n closed walks, possibly empty, such that no letter in the walk is
smaller than the letter at the origin. Consider the nonempty walks. Write out the letters
of each walk in the usual order. Given the walk that starts with the letter k, factor the
resulting word u into Lyndon words. That is, let u =u,---u, where u, is the right factor
of u with smallest prefix, and in general, u; is the right factor of %---u; of smallest
prefix. As we noted in Section 1.3, this factorization is unique, and we see that it
recovers the Lyndon words that start with the letter k. The following example illustrates

our bijection.

Note that this bijection is weight preserving because the words that are strung
together all have the same letter at the origin, as do the words that are removed from the

closed walk. We now apply this action to the multisets of Lyndon words that describe the
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terms of the forgotten symmetric functions. This gives rise to a second combinatorial
description of these functions. Again we make use of the concept of circular distance
from Section 1.3. In the theorem below some of the closed walks may be empty, in

which case we do not associate any circular distance with the letter at the origin.

THEOREM 33.2 Define a;=a, =a; =ag for all letters i, j, i, jetN. Let
S be the set of sequences (w,,W,,...,wy ) of closed walks on 1 <-+-< N <1<---< N witha
total of n places for which i is the letter at the origin of the possibly empty closed walk
w;, the letters T1....,i =1 do not occur in w;, and the upper case letters of the sequence

are separated by the circular distances Ay, 2,,...,A,,. Then

Flhn &)= sgn(l)ZW(s).

seS

This result is a consequence of reworking the bijection described above. Suppose
that we start with a multiset of Lyndon words on the alphabet £N for which each Lyndon
word has at least one upper case letter, so that each Lyndon word starts with an upper
case letter. In stringing together Lyndon words that start with the same letter, the
bijection does not affect the circular distances separating the upper case letters. Therefore
we get walks as before, but those for which there is an upper case letter at the origin of
each walk, and for which the circular distances are given by the partition A. QED

As usual, we consider what the theorem has to say about the cases A= 1" and 4 =
n. If A= 1", then every letter is upper case and the function generates the description of
h(Epsenes §N) in terms of sequences of closed walks that was given in Theorem 2.2.3. If
A = n, then there is only one closed walk, and the unique upper case letter occurs at the
origin. This generates all closed walks of length n and gives sgn(n)p,(&,,....&y )-

Finally, we may ask, what does f, (,,&,,...&,) generate if a; =0 forall i # j 7 List the
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walks by length, and list walks of equal length by the letter at the origin so that it
increases. If the length of the jth closed walk is u; and the letter at the origin is i;, then
the walk has weight (aij,.j )#I. The places in each walk may have upper or lower case. If
the places with upper case mark the first squares of a brick, then we see that the function
generates brick tabloids of type A for which a different letter /; is assigned to each row,
and in rows with the same length the letters appear in order, and each row of length 4,
has weight (a,. 5 )#I. This is the interpretation of f, in terms of brick tabloids that we saw
in Section 1.1.

Our second expression for f,(&,&,,...£, ) may be used to provide a
combinatorial interpretation of the equation e, = Y. f,. Givenatermin f,(&,&,,...&y),
find the least i for which there exists a walk with ﬂ-:tter [ at the origin Q and there exists
an r such that there is a letter j or j at Q+r# Q for which j>i. If i exists, then find
the least such r and change the case of the letter at Q + r. This action changes sign and is
reversible because it does not affect the origin of the walk. Consider the example below,

pairing terms of opposite sign from fy5,(&,....&,) and fo5,(&,,....&;). Here { =6 and

r=3.

00@

0@0
00@

GQ@ Q@@
(>)

)
=)&)

O— 5@
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The fixed points that we are left with are those for which in each walk the unique place
with upper case is the origin, and if the case of the origin is changed to lower case, then
the letter at the origin is strictly greater than the letter at any other place in the walk. This
allows us to ignore case from henceforth, and to describe e,,(&l, SN N) as the
generating function of sequences (w;,w,,...,wy ) of closed walks with a total of n places,
with sign sgn(A), where A is given by the lengths of the walks, and such that for all i,
1<i <N, the letter { appears at the origin of the walk w, but at every other place of the
walk w, the letters are strictly less than i.

We now perform a second involution. Find the least i such that w; is a nonempty
walk which is not a cycle or w;, is not disjoint from some walk w,, k <i. Given w;, note
that the walks w;,...,w,_, are disjoint cycles. The letter at the origin P of w, is i. Find

the least r such that there is a letter j at P +r and

either j isataplace P+s, 0<s<r,
or j occurs at a place R inacycle w,, kK <i.

If j is chosen by virtue of the first event, then redirect P+r—1to P+sand P+s—11to
P +r, creating a cycle. Define the origin of this cycle to be the place with largest letter
k <i, and denote it as w,, noting that previously the walk w, must have been empty, as
otherwise w, would have been chosen by virtue of the second event. If j is chosen by
virtue of the second event, then note that w, is unique because the cycles w,,...,w,_, are
disjoint. Incorporate the cycle w, into the closed walk by redirecting R—1to P+r and

P+r—1to R. The two events are reciprocal, as is demonstrated in the example below,

where i=8 and k=5.
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The action of adding or removing a cycle changes sign. It is reversible because if a cycle
is removed, then it is denoted w, with k <i and is disjoint from wy,..., w,_;, W, 1,..., W,
Therefore if the action is performed again, then we again choose i. What fixed points
remain 7 Those for which every closed walk is either empty or a disjoint cycle. Each

cycle has the usual sign, and so we are left with signed boxes of cycles. This completes

our interpretation of e, = Z Sy
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SECTION 3.4 MONOMIAL SYMMETRIC FUNCTIONS

In this section we find a combinatorial interpretation for the monomial symmetric
function m, (&,,...,&y ). The method used is similar to that used to prove Theorem 3.3.1,

but the result attained appears very different. We start with the equation

m, =—’:—' (ch™ m, )(0)p, and substitute (ch™ m, )(0) = sgn(4 )sgn(0) C(BL U) to get
* O€§,
m, = sgn(l)% ZSgn(a)C(BM) P, We work with triplets (a,BA‘U,Pa) as before, but

* ges,
this time we perform an involution that takes into account the sign of . In the objects

that survive this involution, each upper case letters appears at most once. These letters are
linked by walks the lengths of which are given by 4,,4,,...,A4,. We show as in the last
section that the factor 1/n! is eliminated upon removing the labels given by o. The
resulting objects are readily understood as terms selected from det(J/I - A), the
determinant of the walk matrix.

If A > n, then we declare the convention that A, =0 for i > E(l). Define
R[A,A,--A, ] to be the set of distinct rearrangements of the word A,4,---A,. Recall that
(A”Lll )ij is the generating function for walks of length A, from i to j.

THEOREM 34.1  Define a; =a; =a; =a; for all letters i, |, i, jexN. If
N < £(A), then m,(£,,...,Ey)=0. If N 24(A), then

m(Gonbi)= X sen(D)(A%) (AR), (AT)

TeSy
xXx;xy €R[A42;-2y ]

We start with m, (€,,...,Ey) = sgn(l)% Y. san(0)C(B, o )pg (... Ey) and
* ges,
proceed as in the proof of Theorem 3.3.1. The function ZSgn(a)C(BLG) Po(EpvenEn)

geSs,

generates triplets (O',B P‘,), as in that proof, but with sign sgn(o). In the beginning of

A.0°
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that proof each triplet was identified with a pairing of the cycles of o with circular walks.
The circular walks had vertices taken from the alphabet +N, and the upper case vertices
were separated by the circular lengths 4,,...,4 (ay e now remark that this identification
of triplets with pairings preserves not only weight, but also sign. Therefore

ngn(o)C(Bl' 0) Py(&,,---.Ey) may be understood as the generating function of the

o€,
pairings, with sign.

At this point we define an involution on the pairings which exploits their sign.
Find the smallest label of o, and then the next smallest label of o, for which the letters
at the corresponding places P and Q are equal and have upper case. Redirect place P to
O +1 and place Q toP +1. This action creates two walkalongs from one or one from

two, as in Lemma 1.3.1. It is weight preserving, but sign reversing.
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As can be seen in the example above, the action reverses itself upon a second application
because it redirects places, but never affects their letters or labels. Therefore it defines an
involution by which terms are shown to cancel away.

The fixed points of the involution are those for which each letter with upper case
appears at most one place. In particular, this means that if N < E().), then
m, (&,....,Ey)=0. In general, it means that the circular walks, which are powers of
Lyndon words, must themselves be Lyndon words. Furthermore, the resulting Lyndon
words must all be distinct. The surviving objects are sets of Lyndon words with a total of
n vertices from N for which the upper case letters are all distinct and separated by
circular distances A,,...,4 (Y and for which places are labelled with the labels i,...,1\7 .
The function ngn(c)C(Bl_U)pU(él,...,5 v) generates all such objects. Each set of

oes,

Lyndon words is labelled in n! ways because each place is distinguishable as the words

are all different and they are all Lyndon words. Therefore the function

—1—' Elsgn(O')C(B,l U) Po(&,s---,Ey) generates the same objects, but unlabeled.
" :

* ge§,

We now show how to do away with the alphabet £N and think of these last

objects in terms of the alphabet N. Note that in any object the letters at the upper case

places are all distinct. Suppose they are i—l,...,z[(“. Then their positions in the walkalongs
determine a cycle structure on the letters i ,...,i, ., upon ignoring the lower case vertices.
1 £(A) p g g

Note also that sgn(o)sgn(4) is equal to the sign of this cycle structure. In this light the

object may be thought of as a box of cycles on the letters i,...,i, ,,, with sign, in which

(4)

the £(A) edges have been replaced by walks of length ,,...,A “(ar
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replacing2 - 4 with2 5152 -4
replacing 3 >3 with3—>1-52-51-53
replacing 4 - 2 with4 — 2

We conclude that m, (&,,...,&y) = sgn(l)% zsgn(G)C(Bl'o)po(él,...,fN)
generates all objects consisting of a box of cycles or‘; e;,(;{) places, with sign, and with the
edges a; replaced by walks from i to j of length 4,,...,4 () For given such an object,
we can recover the upper case letters, and then the Lyndon words. We can introduce
labels, think of the Lyndon words as circular walks, and then as closed walks, and finally
find for our object a match among those original triplets that survived the involution. We
have first constructed a map from the these triplets to our objects, and now demonstrated
a map from the objects to the triplets. The two maps are inverses, and consequently
determine a weight and sign preserving correspondence, which proves the result. For
purposes of notation, we may assume that walks of length zero are attributed to the letters
that do not appear in the box of cycles. The result is then the same as in the statement of
the theorem. QED

The combinatorial objects that we have constructed may be thought of as terms in

the determinant det(I/I— A) of the walk matrix. Let W, be the generating function for

nonempty walks from i to j, and let /; be the generating function for the empty walk

from i to i. The determinant of the walk matrix is given by
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I, +W, W, Wiy
W. I,+W, - W.
det :n n : 2 iy 2N
W Wy, e Ty + Wy

For any term in this determinant there is some A > n and some » such that the term is
made up of £(A) nonempty walks of lengths 4,,...,4 «a) that are placed into a cycle
structure. Such a term corresponds to a unique term in ZZm,1 (-, Ey), as we have
described it, and the two terms have the same sign. Lik;;;sz, every term in

> Y m, (&, y). as we have described it, corresponds to a unique term in

n=0A»n

det(I/I—A). This correspondence yields a striking interpretation of the equation
h, =Y, m, , if we recall the equation det(I/I—A) =Y h(£,.....Ey) that we interpreted in

A>n n20
Section 2.3.

If A =1", then every walk is of length one and the function generates all boxes of
cycles with n places, with sign, and we have e, (¢,,...,Ey). If A =n, then there isa
single place that is replaced by a single walk of length n. This gives all closed walks of
length n, and we have pn(ﬁl,...,éN). Also, if we set a; =0 forall i # j, then each cycle
must be a loop, and each walk must be of the form (aﬁ)l’ . This recovers the usual
definition of the monomial symmetric function m,, generating all distinct terms of the
form (a% )M (U% )12---(aiw.m)lm, where the letters I,,...,{ /() 4T€ all distinct.

For purposes of comparison we consider the elementary symmetric functions
e,(&,,&,,...£y). The elementary symmetric function e, (£,,£,,...£,) is generated by the
function det(I+ xA), where we take the coefficient of x". The generating function for

N

N

e (&.8,0..&y) is [[det(I+x,A) = det(H(I + xkA)], where we take the coefficient of
k=1 N k=]

xx57...x,. Note that | [T(I+x,A)| generates walks from i to j that have been

paired with a subset of the labels Ilu\? of size equal to the length of the walk.

Therefore el(djl, &k N) may be understood as the generating function of terms gotten
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by taking a box of cycles of length A,, with sign, and replacing the edges with walks,
making sure that each walk of length k is associated with a subset of 1,...,N of size k,
and that taken together the subsets form the multiset 1M2%  nt,

The main disadvantage of our expression for m, (¢,,...,€y ) is that many of the
terms that it expresses cancel. It is in fact possible to insist that no two walks have the
same letter in the same position. Even so, further cancellation does take place, as implied
by the example below, where the objects correspond to terms of m,, (51,..., éN) of equal

weight, but opposite sign.

replacingl = 2withl1 52— 2
replacing2 > 1with2 53 >4 5251

replacing1 > 1withl1 > 2 —>1
replacing2 > 2 with2 53545252

©8

It would be interesting to discover a combinatorial interpretation of m, (£,,...,&y ) in

which no further cancellation occurs.

Of the many features of our expression for m, (&,....,&y ) that do make it

attractive, the most intriguing is the way in which the closed walks (A“ ) slide into the

L

role of the products éf‘ when we set a; =0 forall i # j. The connection is mysterious,

but one that has been with us from the very beginning, upon our evaluation of
N N

Py (660 by) =2 80 = Z(Ah)u . Awaiting us is another such example, a quotient
i=l i=l

formula for Schur functions which is the first result of the next chapter.



CHAPTER 4
SCHUR FUNCTIONS

The object of this chapter is to evaluate the Schur functions s, at the eigenvalues
£,s..., &y of an arbitrary N x N matrix A. We collect together results from three
different approaches. First, in Section 4.1 we consider the Schur function as the quotient
of alternants s, (x,,...,xy) = det(xf‘“s‘)lsi'jsN / det(xf‘)lSi'jSN . It is possible to evaluate
the alternant det(xf‘*‘s‘)ls‘_‘jsN at the eigenvalues £,...,&,, but only as the square root of a
symmetric function. We find a more interesting approach, which is to express the Schur

function as a quotient s, (&,,...,&y) = det((A“a‘)ﬁ)ls- .SN/det((A‘Si )ﬂ )1{ )
13y 4

determinants which are not equal to the alternants, but play an analogous role.

of

Next, Theorem 4.3.1 presents an interpretation of s, (£,,...,&y) in terms of rim
hook tableaux which generalizes the fact that s, generates the column strict tableaux of
shape A. This generalization is one of the two main results of this thesis. Its proof
makes use of a combinatorial interpretation of the Jacobi-Trudi identity
5, = det(hls-iﬂ)lg,-,jsN in terms of special rim hook tabloids that is due to Egecioglu and
Remmel [ER1]. The relation between the rim hook tableaux and the special rim hook
tabloids is worked out in Section 4.2.

Finally, in Section 4.4 we address the fact that s, (51 £ N) is the trace of the
irreducible representation of the general linear group that is associated with the partition
A > n. We do not arrive at any new results, but simply record a combinatorial
interpretation of s, (&,,...,€y ) that can be gotten by taking the trace of the irreducible
representations described by Littlewood in his book [L]. This interpretation is

encouraging when A is a hook shape, but rather involved in the general case.

126
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SECTION 4.1 A NEW QUOTIENT FORMULA

A natural way to define the Schur functions is as the quotient of the monomial

antisymmetric functions a, , ;=det(x}"**

) _and oz = det(xf") ,as we did in
! 1<i,j<N

1€i,jsN
Section 1.1. We are able to evaluate these functions at the eigenvalues &,,...,&,,, but this
does not produce anything of combinatorial interest. We then start over with a slightly
different approach that best captures the spirit in which we have been working.
Machinery from a proof of the Jacobi-Trudi identity is reworked in terms of edges a;
instead of vertices x;. A result about walks from Section 2.4 makes it possible to express
the Schur function as a quotient of determinants s, (él,..., éN) =
det(( Al'+5i)g)ls,»,,-sw / det((A‘s' )ﬂ)lsi,jsN that brings to mind the familiar quotient of
alternants.

How can an antisymmetric function a(él,..., & N) be expressed in terms of the
entries of A 7 This cannot be done in any straightforward way because the eigenvalues

themselves cannot be calculated in terms of the entries of A. We therefore try to express

det(xf‘*‘;‘)lg'jsN in terms of symmetric functions of £,,...,€,. Indeed, this can be done

]

by taking the square of de:t:(.r'.l“J"s")1 .y Leta;=4,+8;. Then
<ijg

AN R
a. = det x:f‘ xé__zN -det x?‘ x;,_zN
x.ﬁl x.ﬁ” Xy x.ﬁ”

x x Y X x

=det xlf’ x?z x?al x?"

X xgt Axp x,é”



Dora, " Paray
= det pu,::+al pa2.+a,,,
Pojva, ' Payta,
and consequently a, = iﬁet(pa‘w,) . The Schur function is therefore the
i 1<i, j<
following quotient of square roots.
5, = ldet Paa, )1<. jSN
(p5‘+5f)lsi,jSN

It is not clear what to do with this square root. Another formula that may be relevant in

this regard is s, = \/det(h“ te it !')1 o which can be found in Macdonald's book
(] Nt Sl,jSl
[M, 30]. Either of these formulas may be evaluated at the eigenvalues &,,...,&,, but this

does not appear to add any combinatorial significance.

A+

There is another way of expressing det(x i

) as a combination of
1<i,j<N

symmetric functions, and this leads us to one of the two main results of this thesis. Itis

impossible to express det(xf‘*é') _ as a rational function of symmetric functions in

11, jEN

the variables &,,...,&, because then det(xf‘*‘s‘)l( < would itself be a symmetric
<i,j<i

function. However, it is possible to come very close, as will be apparent in the proof of

the next theorem.

THEOREM 4.1.1  Ler {(A})< N and §;=N —i. Then

5, (€., Ey) = det((A | i)jj)lsi.jSN

detf(A%),

)ISi. JsSN
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The inspiration for this formula is a proof of the Jacobi-Trudi identity
s, =det(h, )

functions e”) that are modifications of the elementary symmetric functions e, (x,,...,xy)

taken from Macdonald's book [M, 25]. That proof involves

1<, jSN
in that the variable x; is omitted so that ¢! = ¢,(x,,....xy)|. _ . Equations

N 1
S s nan (1) e, = x}*% are derived and placed in matrix form (let &, =0 when
k=1

r <0 and note that §, =N —i):

1 2 N
h)., hz,+1 hzl+(~—1) egv)—l ‘—’Ml - egl—)l
1 (2) (N)
Poes h, Ppsin-a) ) el e, v ev
1 2 N
h).,.,-(N-l) h).N-(N—Z) h).,,, e((,) e((,) e(() )
xlll‘*‘sl x;-r*al x:-,r*al
e
xllu‘“sn x;w‘“sn sz-HSN

Taking determinants of this matrix equation H,M = A, ,; gives the formula

det(A, ;) = det(H, )det(M) where det(A,,;) is the monomial antisymmetric function
a,,5- When A =0, then det(H,)=1, so that det(M)=det(A;)=a;. Therefore
det(H,)=a,,s/a; =s,.

The equation det(4,, )= det(H,,,)det(M) does express det(4,,,) asa
polynomial of symmetric functions. However, the functions egfl . are not symmetric
functions in the variables x,,...,xy because they are missing the variable x;. If it were
possible to evaluate the functions egfl,, at the eigenvalues and express them in terms of
the entries of A, then it would be possible to calculate & jl"*‘s", which is a contradiction.

Indeed, given A it is impossible to construct the entries of a matrix A” with one less

eigenvalue.



However, the proof of the Jacobi-Trudi identity can be employed if e(’ )i

placed with a variant: Given A = ( )1< <N , let ér(j) be the generating function for
roxes of cycles, with sign, that employ r edges but do not employ the letter j. Then
consider the expression ENZ 1 vsnae (e €y D 2, Ttis the same as

2‘}1“5_“,t [ §~)( 1)"*&l)), because &4, =0 when k <1. In this latter
ekx;l)rels;fon think of (~1)""* as adding sign -1 to each edge of every box of cycles
generated by (. And think of h, ,; ., (&,.....&y) as the generating function for
stacks of boxes of cycles that employ A;+ 06, — N +k edges. The pairs of objects
generated by the expression Zh/H SN+ (&, éN)( ~1)"*&{/), resemble those
generated in Theorem 2.1.4 in melll:ltst)erpretatlon of z 1)"_ he._, =0 (note especially
the remark concerning the case N <n). Apply the ikns/olution from that theorem, but
modify it so that a cycle in the first box of a stack generated by 4, , 6,~—N+k(él"“’é v)
cannot be a candidate if it has the letter j. Adding this extra condition does not affect the
reversibility of the involution and its fixed points are those in which no cycle is a
candidate. Any cycle in the box generated by &\, could have been a candidate, and
therefore this box must be empty. A fixed point therefore has no sign and the stack of
boxes of cycles must be generated by #, 5 (&,...,€y ) and employ all A, + &, edges. The
fixed points are those stacks of boxes of cycles with A, + 6, edges for which the first box
has exactly one cycle, and that cycle has the letter ;.
By Lemma 2.4.2 the generating function for these fixed points is the same as that

for walks from j to j of length A, + §;. Therefore 2 b6 g (Eppenn E =DV FED,

(AA 6 ) .. These equations lead as before to a matrlx equation
I

(él’ éN) hkﬁ»(N—l)(él’“"éN) és)l é,(vz)l e}f’)l
b)) |2l 8 )

bl ) |\ e
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T S
T N W SO
(Abn)(AM) e (AR

If this matrix equation is H,M = 4, , then upon taking determinants we have

det(/ims) = det(Hl)det(M) where s, (&,,....Ey)=det(H,). If A =0, then det(H,)=1
which shows that det(M ) = det(ﬁé). Therefore

der{ (a2 )

det[(4%) |

7 11<i, j<N

1<i jSN

S)_(él’éZ"“gN) =

QED

N
The argument above hinges on the equation 2h1i+5i~~+k(§l,..., Ev)=D)" i),
k=1
= (A’1 +8 ) . We arrived at this equation by combinatorial means, but it is possible to
b

derive it algebraically by applying Cramer's rule. This gives

(a7, =[ ! jﬂ

_ det(1—xA)?
det(I-xA) |

det(I—-xA)W .

x;—l

det(X - xA)7
[det(l xA) ). et -xA)".,.

3-(N-k)

s\ det( I xA)

k

S RN CTACHR

where the last equality holds because 2{ (51, 5,,)(—1)”"" = det(I — xA)# »

As noted in the proof, (A "“5") . 1s the generating function for closed walks from j

to j of length A, + &, It plays a role akin to that of Jc’1 *% Setting a;=0,i#j,and
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A+5; ) .
a; = x; makes (Al‘w‘) = (a ”) and gives the usual quotient of alternants
P

5, (xl,...,xN) =a,,,/a;.
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SECTION 4.2 THE GEOMETRY OF RIM HOOKS

One of the two main results of this thesis is Theorem 4.3.1, which presents a
combinatorial interpretation of s, (&,,...,& ) in terms of rim hook tableaux. This
interpretation is attractive because setting a; =0, i # j, recovers the well known fact that
s, generates the column strict tableaux of shape A . The purpose of this section is to
develop the facts about rim hooks that we will refer to in establishing Theorem 4.3.1.

Our point of departure is the Jacobi-Trudi identity s, = det(hli_iﬂ.)lsuﬂ. In our proof of
Theorem 4.3.1 this identity takes the form s, = ZK o3h,. As we mentioned in Section
1.2, the integers K ;’A have a combinatorial interg;;tation due to Egecioglu and Remmel
[ER1] in terms of special rim hook tabloids. Two facts about these tabloids are of special
importance, and we record them as Lemma 4.2.3 and Lemma 4.2.5. Given a special rim
hook tabloid, Lemma 4.2.3 shows us ways of constructing a tabloid of opposite sign.

This is essential to the sign reversing involution that figures in the first half of our proof
of Theorem 4.3.1. Lemma 4.2.5 relates special rim hook tabloids with rim hook tableaux.
This relationship makes possible the bijection that figures in the second half of our proof
of Theorem 4.3.1.

In our search for a combinatorial interpretation of s, (&,....,€y ), our first
observation is that the limiting cases s,,(&,....Ey) =k, (&, 6y ) and 5,.(&,....E, ) =
en(’él,...,g"N) can both be expressed in terms of cycles, as was stated in Theorems 2.1.2
and 2.1.5. Perhaps it is possible to express Sl(é‘l,...,éj,\,) in terms of cycles ? The answer
is yes, if we use the Jacobi-Trudi identity s, = det(h'li"i+j\)lsi,jsN or its dual
s, = det(ell,_,.ﬂ.\)

actually calculating s, (&,,...,£y ). We find this approach somewhat disappointing,

. The latter identity in fact provides a very helpful means of

1<i,j<N

however, because setting a; =0 for i # j does not give rise to column strict tableaux, as

we would like, but simply recovers the Jacobi-Trudi identity. It is true that there exists an



134

involution due to Gessel and Viennot [S, 82] which shows how the terms of the Jacobi-
Trudi identity give rise to column strict tableaux. However, we would like the column
strict tableaux to appear in a direct way. Qur purpose is not merely to interpret

5, (€»-.-,€y ), but to find an interpretation that generalizes s, as the generating function

of column strict tableaux of shape A.

In our proof of Theorem 4.3.1, we do take the Jacobi-Trudi identity ZK ;‘llhv as

our starting point. We use special rim hook tabloids to express K ;‘11 , but we express

h, +(&1---€y) in terms of Lyndon words instead of cycles. Of interest to us is a sign
reversing involution that Egecioglu and Remme! [ER1] describe on the terms of

ZK ;flhv . In our proof of Theorem 4.3.1, we perform a similar involution on the terms
c:; nZK ok, (&,,....,€,) for which the fixed points are rim hook tableaux, instead of
colt;;m strict tableaux. The purpose of this section is to describe the properties of rim
hook tableaux and special rim hook tabloids that our proof will depend on.

We recall from Section 1.2 that a rim hook tableau of shape A is an object that
consists of a sequence of shapes @ =A" c AY cA® c...c A" = 4 such that for all i,
1<i<r, the skew shape A”) — AV is a rim hook. The sign of a rim hook that starts at a
square (E,N),, ; and ends at a square (E,N"),,  is defined to be (-1)""", and the sign
of a rim hook tableau is the product of the sign of its rim hooks. The Murnaghan-
Nakayama rule for calculating the irreducible character y* (o) states that if we fix a

rearrangement r,,...,7, ,, of the lengths o, -2 0, of the cycles of a permutation

ges, , then

2 (0)= ) sen(T),

Tell
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where IT is the set of rim hook tableaux of shape A with rim hooks of length Tireeor Ty gy
For example, if A =543, 0,=4, 0,=3, 0,=3, 0,=2,andwe fix r, =4, r, =3,

r, =2, r, =3, then IT consists of the following tableaux.

The first three tableaux have positive sign, and the fourth one has negative sign. It
follows from the Murnaghan-Nakayama rule that the value of 2°* on elements of the
conjugacy class 4332 is x**(4332)=3-1=2. If we choose a different order r, =3,

r,=3, r, =2, r, =4, then the number of tableaux is different,

1144 24|4
112(4 |4 212|414
1122|313 111(1]3]|3

but the final answer is still the same: ¥**(4332)=2-0=2.

A special rim hook tabloid T of shape A is a rim hook tableau of shape A for
which every rim hook is a special rim hook, that is, every rim hook starts in the leftmost
column of the shape A. The ith special rim hook of T is the one, if any, which starts at
(L,7)., - If no special rim hook of 7 starts in the ith row, then we say that the ith
special rim hook of T is empty and has length zero. The type v >n of T is the partition
that consists of the nonzero lengths of the special rim hooks of T'. The sign of T is the
same as if it were a rim hook tableau. We remarked in Section 1.2 that K ;,11 = ZSgn(T )

Ted
where @ is the set of special rim hook tabloids of shape A and type v. Indrawing a
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special rim hook tabloid the special rim hooks are indicated by solid lines. The examples

below show that K3, ,,,, =1-1=0.

One way to relate rim hook tableaux and special rim hook tabloids is to apply the
map ch™, described in Section 1.1, to the Jacobi-Trudi identity s, = ZK Joh,. Recall
that (ch'l 5, (o) =2"(0) and (ch™ h,)(0) = n*(0). This yields an ic;:;ltity

Z K .271"(0). There exists a combinatorial interpretation of the character
n'(o) invtz:rms of ordered brick tabloids, as we remarked in Section 1.2. The involution
that we use in Theorem 4.3.1 and the bijection that we use in Lemma 4.2.5 are very
similar to those that would be used to give a combinatorial proof of

2*(0)=) K;,n"(0). This point will be made more explicit at the conclusion of

Ven

Section 4.3.

The fact that rim hooks have one square per northeasterly line makes it very
sensible to work in an east by northeast coordinate system. But such a coordinate system
works especially well if, given a shape A > n, we fix H 2 £(A) and work within a larger
set 5”7 U A of squares which for all j, 1< j< H, extends the jth row of A to the west
by 8/ = H+1- j squares. We establish a coordinate system E x NE on the squares of
8" U A by defining (i +67, j)
A =32

e = Un )y as illustrated below, when H =4 and
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We do not abandon the coordinate system E X N altogether, but we will use the
coordinate system E X NE whenever we work with northeasterly lines. In particular, we
denote by (i,*),, vz the northeasterly line which contains the square (i,1). .-

A particularly helpful way of exploring the properties of a special rim hook
tabloid T of shape A > n is to extend the special rim hooks to the shape §” U A . For all

i, j,1<i< 5}’, 1< j<H, let the square (i, ), belong to the jth special rim hook, as

shown below.
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The resulting object is said to be the augmented special rim hook tabloid v, (T') of
shape 8" U A that corresponds to T'. It clarifies the properties of T'. For example, from
the illustration of ¥, (T') above it becomes reasonable to claim that the 3rd and 6th
special rim hooks of T end at (0,3),,, and (0,6),, , respectively, even though we say
that they start at (1,3),,, and (1,6),, ., respectively. This point of view helps eliminate
the difference between those special rim hooks of T of length zero and those special rim
hooks of length greater than zero. It becomes sensible to declare that if the jth special

rim hook of T has length zero, then it starts at (1 +8;, j) =(1, ).,y and ends at

ExNE

(5 7, j)ExNE =(0,j),.y- This convention makes sense even when j 2 £(4).

In general, we define an augmented special rim hook tabloid U of shape " U A
to be any decomposition of the squares of 6" U A into a disjoint union of rim hooks that
start at (1, ), 1< j< H. We emphasize that the special rim hook tabloid v, (U)
need not exist. Given a shape 6" U A, note that the northeasterly lines which pass

through the rightmost square of some row of §" U A are precisely (2. ;+o! ")ExNE’

1< j< H. Hence the number of squares in the intersection of §” U A with

(2. ;+6; ")ExNE is one greater than the number of squares in the intersection of §” U 4

with (2. S+OT 41, ')E e A consequence of this fact is that if an augmented special rim
X NE

hook tabloid U has shape 8" U A, then exactly one rim hook of U ends on each of the

northeasterly lines (K ;16 JH ,*) , 1< j< H. Furthermore, observe that the addition to

ExNE

U of an H +1th rim hook with start at (1, H +1),_,, gives rise to an augmented special
rim hook tabloid (with H +1 rim hooks, and moved one column over ) if and only if this

H +1th rim hook does not end on any of the lines (ﬂ.j + 87,

) gy |STSH s

illustrated below , where H +11is 4.
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By induction on H, it follows that given a permutation 7 € S, it is possible to construct
an augmented special rim hook tabloid of shape 67 U A such thatforall j, 1< j< H,
the rim hook that starts at (1, j),,, has length A, + Sf(j). Hence there are exactly H!
augmented special rim hook tabloids of shape 6" U A, and we may index them by
Te S,, so that U_ denotes the augmented special rim hook tabloid for which the rim
hook that starts at (l,j)ExNE has length ).T(j) + Sf(j), 1<j< H. Define the sign of U, to
be the product of the signs of its rim hooks. Then it can be shown that sgn(U,) =sgn(7)
by considering the case when 7 is a transposition (j—1,/), 2< j< H. Therefore the H!
terms of the determinant det(/li + 6/ )KUSH provide all of the information about
augmented special rim hook tabloids of shape 67 U A.

We compare below an augmented special rim hook tabloid U, and the

corresponding term from det().‘. + 5‘.H) , when 4 =3321and 7=(15)(247632).

1<i,j<
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10 10 10 10 [10] 10 10
9 9 9[99 9 9 9
7M 7 1 1 1 1
5 5 5 5 5 5 [5]
3] 3 3 3 3 3 3
2 2 2] 2 2 2 2
1 1 1 1 1 [ 1

The choice of 7 is such that ¥}, (Ur) does not exist. The following criterion tells us

when 3 (U,) does exist.

LEMMA 4.2.1 Let U, be an augmented special rim hook tabloid of shape

8" UA suchthatfor all j, 1< j< H, the rim hook that starts at (1,),.,, has length

ExNE

A+ Oy Then Wi (U,) exists ifand only A+ 8ty 2 8] forall i, 1<i<H.

©(J) (J)
If v, (U,) exists, then for all j, 1< j< H, the squares (1, /), pzse-s (5JH,J')ExNE
belong to the same rim hook of U, and therefore 4, + 6:{/.) > 5/ forall j,1<j<H.

Conversely, if )“r(j) + 51}2/’) > 5j" forall j, 1< j<H, then find the smallest j for which
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the squares (l,j)ExNE,...,(SIH,j)ExNE do not all belong to the same rim hook of U,. If j
exists, then '11(,') + Ef(j) < 6;’ , with a contradiction. Therefore j does not exist and

¥ (U,) does exist. QED

We now consider what an augmented special rim hook tabloid w,,(T') can tell us

about a special rim hook tabloid 7.

LEMMA 4.2.2 Let T be a special rim hook tabloid. Then no two of its special

rim hooks end on the same northeasterly line.

This follows from the fact that the rim hooks of v, (T) end on the lines
(A;+8f.+) . 1<j<H,whichare all different. QED
EXNE

LEMMA 4.2.3 Let T be a special rim hook tabloid of shape A such that for
all i, 1<i< (), the ith special rim hook of T ends at (h,,*

4 )EXNE'

Fix j#k,
1< j,k <{(R), such that (hi")stE passes through the kth special rim hook. Then there
exists a special rim hook tabloid T of shape A such that the jth special rim hook ends at

(Bes) g the kthends at (k) andforall i, i# j, i#k,1<i<£(1), the ith ends
at (h;,+)

ExNE "~

Moreover, sgn(T) = —sgn(T).

Consider an augmented special rim hook tabloid ,,(T), £() < H. There exists
a permutation o € S, such that v, (T)=U,. Consider the augmented special rim hook

tabloid U, ;. Its kth rim hook ends on (hi")ngE’ its jth ends on (A,,+) and for

ExNE’
all i, i#j, i#k,its ithends on (h,+),, ... Furthermore, sgn(Ua_(jvk)) =—sgn(U,). The
fact that (hi")stE passes through the & th special rim hook of 7 implies that the length

Aoy * 6(’,’( 0= 8/ of this special rim hook is greater than or equal to
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H H
e =k =2 g + 854y = Ay~ Oy and therefore A, + 64 ) = Aogsy + Sy 2 Ok -
It is also true that l ot 8 G0 2 5;’ and so it follows from Lemma 4.2.2 that

‘/’5"( a-(j.k)) exists. Settmg T= Wi (UU'(I._”) completes the proof. QED

We say that Lemma 4.2.3 has the effect of switching the northeasterly lines at
which the jth and & th special rim hooks of T end. Note that this switch changes the
lengths of these special rim hooks. The example below illustrates an application of

Lemma 4.2.3 with j=5and k=2

If k=j+1 or j=k+1, then Lemma 4.2.3 describes the switching employed by

Egecioglu and Remmel in their combinatorial proof of s, , = det(hl,_#,,r j_,.) y
iTH 1<i,j<

will use Lemma 4.2.3 in order to create a sign reversing involution as part of our proof of

. We

Theorem 4.3.1.
Another important element in our proof of Theorem 4.3.1 is a bijection that relates
special rim hook tabloids and rim hook tableaux. The following lemma explains the

lengthening or shortening of a special rim hook tabloid T in terms of the adding or

removing of a rim hook tableaux from the shape of T'.
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LEMMA 424 Fix A>n and H>{(A). Let T be a special rim hook tabloid
of shape A > n, and for all i, 1<i< H, letits ith special rim hook have length r;. Let
U>(n+x). Then p~ A is a rim hook of length x if and only if there is a unique k,
1<k < H, for which there exists a special rim hook tabloid T, of shape | having a kth
special rim hook of length r,+x,andforall i, i#k, 1<i<H, an ith special rim hook
of length r,. Moreover, sgn(T,)=sgn(T)sgn( —A).

Let v-(n—y). Then A -V isa rim hook of length y if and only if there is a
unique k, 1<k < H, for which there exists a special rim hook tabloid T _ of shape
having a kth special rim hook of length r, —y,andforall i, i #k, 1<i<H,an ith

special rim hook of length r,. Moreover, sgn(T) = sgn(T_)sgn(A — v).

The proof of this lemma turns on the fact that a rim hook pt — A that starts ata
northeasterly line (r,*),, vz and ends at a northeasterly line (s,+),, .y can be added to a
shape A if and only if the northeasterly line (r —1,+),, ., contains the rightmost square of
some row of A, and the northeasterly line (s+1,+),,,, contains the uppermost square of

some column of A. This fact is illustrated by the example below.

, Ar=1%) e
/ y; (r")ems

/ (S")EXNE
(s+1)

ExNE

\

This result holds even when the relevant row or column of A has length zero.
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The special rim hooks of T end on precisely those northeasterly lines which pass
through the rightmost square of some row of 4. Upon adding a rim hook g — A, the
northeasterly line (r —1,+),, > Which passed through the rightmost square of a row of ,
does not pass through the rightmost square of a row of A. Also, the northeasterly line
(8,%) g n» Which did not pass through the rightmost square of a row of 4, does pass
through the rightmost square of a row of g. The other northeasterly lines are unaffected
in this regard. Therefore any special rim hook tabloid of shape it may be thought of as
being gotten from a special rim hook tabloid of shape A by lengthening the special rim
ook thatends at (rr—1,+), vz by X =s—r squares. Given T and p — A, then appealing
to v, (T) shows that there exists a unique augmented special rim hook tabloid U of
shape 8" U A such that for all i, i # k, 1<i < £(A), the length of the ith rim hook of U
equals the length of the ith rim hook of ., (T), and the length of the kth rim hook of U
is x greater than the length of the kth rim hook of y,(T). The special rim hook tabloid
W (U) exists, and in fact, T, = y, (U) is unique.

Conversely, suppose that there exists special rim hook tabloids T of shape A and
T, of shape it ,and thatforall i, i# k, 1<i<{(A), the length of the ith special rim
hook of T, equals the length of the ith special rim hook of T, and the length of the kth
special rim hook of T is greater than the length of the & th special rim hook of T,. Then
i - A is a connected set that consists of one square per northeasterly line, and hence
Ji— A is a rim hook.

In order to show that sgn(T, )=sgn(T)sgn{y — A ), we first suppose that k = ¢(4).
Then the end of the kth special rim hook of 7' occurs at the square to the immediate west
of the start of the rim hook p —A. Therefore the product of their signs equals the sign of
the kth special rim hook of T, and sgn(T,) =sgn(T)sgn(i — 1). Next, suppose that
k# £(A). Then use Lemma 4.2.3 to switch the northeasterly lines at which the & th and

¢(A )th special rim hooks of T end. This yields a special rim hook tabloid T, such that
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sgn(T,) =—sgn(T). Incorporate the rim hook f —A into the £(A )th special rim hook of
T,. This yields a special rim hook tabloid T, such that sgn(T,) = —sgn(T)sgn(u — 4).
Finally, use Lemma 4.2.3 to switch the northeasterly lines at which the kth and ¢(4)th
special rim hooks of T, end. This yields the special rim hook tabloid T, and shows that
sgn(T, ) =sgn(T)sgn(u — 4).

The proof of the first half of the lemma is complete. The second half is proved in
essentially the same way. QED.

We illustrate Lemma 4.2.4 with two examples, one in which a special rim hook of

nonzero length is lengthened,

and another in which a special rim hook of length zero is lengthened.

In the first example k =3, and in the second k =1. In either case we may visualize the
start of the rim hook as sliding down a northeasterly line until it can be connected with

the end of a special rim hook. Note that these same examples can be used to illustrate the
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shortening of a special rim hook. Observe also that the equation
sgn(T, ) =sgn(T)sgn(p — A ) holds.

Lemma 4.2.4 compares the incorporation of a rim hook with the lengthening of a
special rim hook. Applying this lemma inductively allows us to compare the construction
of a rim hook tableaux with that of a special rim hook tabloid. We record this
relationship with the following lemma which in the next section will supply us with an

important bijection in our proof of Theorem 4.3.1.

LEMMA 425 Fix A>nand x,,...,x,. Let C be the set of sequences
T,,T,,....,T, such that T is the special rim hook tabloid of shape &, T, is a special rim
hook tabloid of shape A , and there exists a sequence i,,...,i, such that for all b,
1<b <r, lengthening the i,th special rim hook of T,_, by x, squares gives riseto T,.
Let the sign of the sequence T,,T,,...,T, be the sign of the special rim hook tabloid T, .
Let D be the set of rim hook tableaux X such that X is given by a sequence of shapes
D=2 AV c...c A = A such that for all b, 1 <b<r, the length of the rim hook

AP — 207 g x,. Then there exists a sign preserving correspondence between the

elements of C and D.

This result is a consequence of Lemma 4.2.4. Itis true when r =1, and the result
follows readily by induction on r. Suppose that the result is true for r —1. Given arim
hook tableau X from D, removing the rim hook A — A"™ leaves a rim hook tableaux
X’ with rim hooks of length x,,...,x,_,. Assuming the result is true for r —1, there exists
a sequence of special rim hook tabloids T7,...,T,_; which corresponds to X’ and such that
T,_, has the same sign and shape as X’. By Lemma 4.2.4, the special rim hook tabloid
T,_, has a unique special rim hook such that lengthening it by x, gives a special rim hook

tabloid T', of shape A. Lemma 4.2.4 also tells us that X and T, have the same sign and
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shape. This establishes a sign preserving map X — 73,...,T/_,,T, from D to C. This
map is one-to-one and onto and is the desired sign preserving correspondence. QED.

We illustrate the correspondence of Lemma 4.2.5 with an example. The bth
lengthening of a special rim hook is depicted by assigning the letter b to x, of the
squares of the i, th special rim hook. The shapes of the special rim hook tabloids are the

terms of the sequence of shapes @ = A c A c...c A) =1 which defines the rim

hook tableau.

b | | | O

| U] U
9
9
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In the next section this relation between special rim hook tabloids and rim hook tableaux
will be used in the second half of our proof of Theorem 4.3.1 to express s, (&,,...,&y ) in

terms of rim hook tableaux.
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SECTION 4.3 RIM HOOKS AND LYNDON WORDS

A central fact in the combinatorics of symmetric functions is that the Schur
function s, generates the column strict tableaux of shape A4 . The purpose of this section
is to present an interpretation of s, (,,...,£y) which generalizes this fact. This
interpretation is one of the two main results of this thesis. It follows from the equation
S, = ZK L2h, . The functions {h,}  areevaluated at the eigenvalues &,,...,€, of an
arbitr;;;' N x N matrix A and interpreted as generating functions of multisets of Lyndon
words. The integers K ;fl are given a combinatorial interpretation due to Egecioglu and
Remmel in terms of special rim hook tabloids. A sign reversing involution is defined on
the objects generated by ZK S2hy(&,-.r €y ), and those that survive are expressed as rim
hook tableaux. The rim I:c:’cl)ks of the tableaux are associated with Lyndon words. Special

conditions on the rim hooks ensure that if a; = 0 for i # j, then the rim hook tableaux

become column strict tableaux.

THEOREM 4.3.1 Let M be the set of multisets of Lyndon words on 1<---< N
with a total of n places. Suppose that m e M consists of Lyndon words £, < £, <--< £,
of length ry,...,r,, respectively. Let T  be the set of rim hook tableaux of shape A with
rim hooks R,R,,...,R, of length r,,...,r_, respectively, such that if Ej ={,, J>i,thenthe

start of R, is in a column strictly to the right of the start of R;. Then

$2(Eireeny) = 2 s0(1) W, (m).

meM
1€T,,




In this proof we rely heavily on the machinery that we developed in the previous
section. Recall that the east by northeast coordinate system which we defined depended

on an integer H. Fix H 2 ¢(A) and recall that the northeasterly line (i +d j” ,-)ExNE

passes through the square (i, /)

ExN*

We stated in the previous section that s, fl, ZK - h fl, ) and that
Vo-n

= ngn(T) where U, is the set of special rim hook tabloids of shape 4 and type
v. By TTe}ligorem 2.1.4 we know that h, (&,...,& v) is a generating function of multisets of
Lyndon words on the letters 1,...,N that use a total of v, places. We think of
5,(&,.....&y) as a generating function of pairs (T,M) that consist of a special rim hook
tabloid T of shape A and a sequence M =(m,,...,m,) of multisets of Lyndon words on
the letters 1,...,N for which for all i, 1<i <n, the length of the ith special rim hook
equals the number of places used by the multiset m;.

Recall the lexicographic order on Lyndon words that we discussed in Section 1.3.

Given M, for any i, 1<i<n, consider the multiset m,. Let ¢, </, £...< ¢, , ., denote

i.d(i)
the Lyndon words that comprise m;, let [, </, <...<[ ;. denote their respective
lengths, and definex;; =/, and x,; =x, ;. +/ ; forall j, 2 < j<d(i). Furthermore, we
require the convention that there exist Lyndon words ¢ and Z with letters unspecified

for which & < ¢ < Z for all Lyndon words ¢. Set ¢,, =&, x,, =0, /, =Z,and

Ld{i)+1

X g =0 forall i, 1<i<n.

In the proof that we embark upon, we do not rely on pictures, but they will be
helpful for illustrating the ideas involved. With this in mind, we associate each Lyndon
word £, ; with the x, ;| + 1th through x; ;th squares of the ith special rim hook of T. For

example, suppose that (T, M) is such that T is the special rim hook shown below on the

left, and M is the sequence of multisets shown below on the right.
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Then we can associate the Lyndon words with pieces of the special rim hooks, as
illustrated above. The task at hand is to define a sign reversing weight preserving
involution (7,M) — (T,M). Note that the sign of (T, M) is given by the sign of T. The
idea behind the involution is to find two special rim hooks that pass through the same
northeasterly line, to break off the continuations that extend beyond this line, and then to
exchange these continuations, along with their respective pieces. Then T and T will
have opposite sign, but M and M will have the same weight. In order for this to work
we must describe a procedure for finding Lyndon words £, ; and ¢, ; for which

€l SOt

H
L
LEN

yieo by o and (xi,j, +9,, )ExNE = (x,.zj2 + 5;’,~)Ex~E. In the example above,
the only pairs of Lyndon words that meet all of these requirements are ¢;,, £,, and £,,,
£ and £,,, £,,. We now describe a procedure that selects a pair ¢, ;, £, ; of highest
priority which remains such even after the exchange. This pair will be 45, ¢, in the
example above because the pieces of rim hooks that these Lyndon words correspond to

are those which end on the northeasterly line that is furthest to the west.
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Given (T,M), let P be the set of all tuplets (a;,a,,b,,b,) for which g, # a,,
1<a,a,<n, 0<h <d(a)+1, 0<b, <d(a,)+1, and such that
H f
(Fon +82) = (X +800e)and £

g atobos <o nsirlann- Thenlet g denote

the smallest value of x,, + &, attained by any (a,,a,,b,,b,) € P. Let Q be the set of all
pairs (g,,a,) for which there exist b, and b, such that ¢ =x,, + &, and

(a,,a,,b,,b,) € P. Note that the fact that (g,,a,) € Q determines b, and b,. Among the
pairs (a,,a,) € Q there is a smallest possible value for the Lyndon word ¢ an> SO let § be
the largest value of g, for which ¢ o5 €quals this Lyndon word. Likewise, among the
pairs (i,,a,) € Q there is a smallest possible value for the Lyndon word £ o SO let ) be
the largest value of a, for which £, , equals this Lyndon word. Define j, and j, so that

(q’*)Ebe': ('xiljl +8,:1, )E NE { Xij, 5” ) . . We have that 4. E <4 £

WA LA T h ]

Furthermore, note that ¢, , </, ..
L)) 2

If Pisempty,thenset T =T and M = M. Otherwise i, i, and j, j, exist.
Exchange the northeasterly lines at which the i th and i,th special rim hooks of T end, as
in Lemma 4.2.3. Let T be the resulting special rim hook tabloid, and note that
sgn(T) =—sgn(T). Define M = (mlm") as the sequence of multisets of Lyndon
words such that m, =m, forall u, u=i, u#i,, 1Su<n,and m, =¢,,<¢, , <.

Sﬂiljlsﬁwzﬂ Cojsn oS4 yyand —Zhlsf S S8, S0 S

WAL T g2 T

L,

(i) Then M is well deflned because ll i N It has the same total

QA+ T Gy rlt

weight as M because the Lyndon words are the same, although distributed among
different multisets. In summary, (’f M ) is well defined and has the same weight as
(T, M) but has the opposite sign.

We illustrate the construction of (T,IW ) with a picture. The Lyndon word ¢ i is

associated with the rim hook that consists of the x; . _, +1th through x, ; th squares of the

-l

i;th special rim hook, and likewise the Lyndon word ¢, , 1s associated with the rim hook

that consists of the x, ; , + 1th through x;, ; th squares of the i th special rim hook. This
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pair of words is chosen so that the northeasterly line at which the associated rim hooks
end is as far to the west as possible. After this line is found, the pair (i;,i,) is chosen so
that £, . is as small as possible with respect to the lexicographical order, and then i is as
large as possible, and then £, ; is as small as possible, and then i, is as large as possible.
Exchanging the the northeasterly lines at which the i th and i,th special rim hooks end

yields the special rim hook tabloid T, as is shown below.

Note that one but not both of ¢, ; and £, ; canequal &, because otherwise there would
be two special rim hooks of T ending on the same northeasterly line. For this same
reason one but not both of £, ., and £, ; ,, canequal Z. Below we present an example

for which ¢, ; =@ and ¢, ., =Z.

b+l
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From these examples it is apparent that the exchange does not affect anything at or above
the line (x,.‘ it 5:’ ,~)ExNE, and therefore we expect (i':ﬁ ) =(T,M). After we prove this,
we will move on to consider the fixed points of the involution.

Given the pair (7,M) with M =(71,,...,7i, ), let 77, consist of the Lyndon words

fiy S..< 7 5, and define ¥, ; justas we did x, ;. Observe that T =T if and only if
(T,M) = (T,M) is a fixed point. Suppose that T #T. We show that T =T by

. . . oH . .o
demonstrating that the same northeasterly line (x,.l LT 0 ")ExNE and the same pair (i,,1,)
that were chosen in the construction of T from 7 are also chosen in the construction of
T from T. In order to do this we make use of the fact that T and T are identical with

respect to all northeasterly lines west of ()c,.l LT+ 5;:’ , -)E e We start by observing that
x
/,

< < ¢ X A =
hop? g‘ﬂ v g’x lx+1’ ‘2 J2+l because E‘l h ’g‘:Jz - g"x'!'x‘*‘l’f‘z»h“ and (xinil + 5‘1 ’t)E;f_NE

(xw2 + 5” ) g because X, ; =x, ; and X, ; =x,_ . Therefore T # T and there exists
a

pair (al,aq) such that (T M ) is gotten by exchanﬂmg continuations of the a,th and

a,th special rim hooks of T'. It must be that the line ( +1+8, - ) at which the

ExNE

exchange is executed is the same as (fé Ll 5:’ ) = (x,.‘ PR 5:’ ")E - because if
X

E«NE

it were any further to the west, than (al,az) or some other pair would have been chosen

instead of (i;,i,) in conswructing (7, M ). For the same reason, if Z, , <Z, , , then

i

¢ . =7 ,and¢,, <l ., ¢

a0 Q.o ay, 8 i1 Tkt Taajrl?

14 so that @, would have been chosen

.z’

instead of i or i, in constructing (T, ). However, if 7, . <7, , , then (i,,i, or some

other pair would have been chosen instead of (4,,q, ) in constructing (-T:ﬁ ) Therefore
2, , = ¢, ;. This same method of reasoning shows that @, =4, £, , =¥, ,,and a, =4,.
Therefore (i‘:ﬁ ) is gotten by exchanging the northeasterly lines at which the i/ th and
i,th special rim hooks of T end. This reverses the effects of the construction of (T, M)
and shows that (Tﬁ ) =(T,M). Therefore (T,M)— (T, M) is a weight preserving sign

reversing involution.
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The fixed points of this involution are those (T, M) for which there are no tuplets
(a,,a,,b,,b,) for which @, # a,, 1<a,a,<n, 0<b <d(a)+1, 0<b,<d(a,)+1, and
such that (x,, +8%,) = (%, +60,) and £, .0, o Sy b0l g TS
always true that £, , <¢, ., and £, , <¢, . .. Therefore for a fixed point (T,M) we
conclude that (xal,,l + 5:,*) = (x% + 5‘::")5% and £, , </, , imply

ExNE
L, </

at <Lonn <L, 4 S, 4 .- In particular, this shows that there is no line

()cai,,I + 6:")5x~5 = ()cazb2 + Sz,-)ExNE such that £, , =/, , . This allows us to establish a
total order on all of the pairs (a,b), 1<a<n, 0<b<d(a)+1. We declare that
(a,8)<(ab,)if ¢, , <8, , orif £, , =¢, , and x,, +3; <x,, +5,.

Fix M. Given M, list out the pairs (a,b), 1<a<n, 0<b<d(a)+1,in
increasing order, so that we have (c,,d,) <(c,,d,) <...< (cy,dy). We note that a
correspondence can be made between tabloids T for which (T, M) is a fixed point and
sequences of special rim hooks that are very similar to those considered in Lemma 4.2.5.
Define T, as the special rim hook tabloid of shape &J, and by induction define T, as the
special rim hook tabloid that is gotten from by lengthening the c;th special rim hook of
T, , by I, squares, where [, denotes the length of the Lyndon word £_ ,, as we stated
in the beginning of the proof. We claim that the special rim hook tabloid T, always
exists, for otherwise, suppose not. Then there exists a smallest i such that T, does not
exist. It must be that lengthening the ;th special rim hook of T; by I, , hasitend on the
same northeasterly line as some other special rim hook. Suppose that this other special
rim hook was extended to this line at a stage j <i, so that it is the c¢;th special rim hook,
and was lengthened by [, 4, squares. Then (c »d j) < (c,.,d‘.), and the fact that (T,M) is a

fixed point implies that there exists a (c,,d, ) such that ¢, =¢ 5 d,=d

41> and

(c j,dj) < (ck,dk) < (c,.,di), contradicting our assumption about the ¢;th special rim hook.
Therefore the induction on i proceeds undisturbed and in fact Ty =T, which is true

because for all s, 1 <s<n, the sth special rim hooks of T andT, have the same length.
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This shows that T gives rise to a sequence T,.T,..T, of special rim hook tabloids such
that for all i, 1<i<y, lengthening the c;th special rim hook of T,_, by [, squares gives
T;. These tabloids have the additional property thatif £, , =£_,,then x_, + 6: <

Xeq + 6::' , because (T',M) is a fixed point. But given any such sequence T,,T,...,T, with
this additional property, and by the fact that M is fixed, we see that it is the unique
sequence which ends in T =T . This is true because it is completely dictated by the
order (c,,d,) <(c,,d,) <...< (cy,dy), which is determined by M and is independent of T.

We have demonstrated that s, (§,,...,€y) generates all pairs (L,X) of the
following kind. L is a multiset of Lyndon words ¢, £ ¢, <---< £, on the letters 1,...,N of
length ry,...,r,, respectively, with a total of n places. X is a sequence T,,T},...,T of
special rim hook tabloids such that T, has shape &, T, has shape A, and for which there
exists a sequence i,...,i, such that for all #, 1<t <y, lengthening the i th special rim
hook of T,_, by r, gives T,. Furthermore, {, =, , #, <t,, implies that the ¢ th special
rim hook of T, _, ends on a northeasterly line to the west of that at which the #,th special
rim hook of T,z_l ends. Finally, each pair is generated with sign, and the sign of X is the
signof T,.

Fix L. Consider all sequences X such that (L,X) is generated by s, (Zjl,...,ZjN).
Lemma 4.2.5 tells us how to associate to each such sequence X a rim hook tableau T of
shape A such thatfor all ¢, 1< <s, the zth rim hook has length r,. In each case the rim
hook tableau T is such that if ¢, =£;, i < j, then the northeasterly line at which the ith
rim hook of T starts is strictly above the northeasterly line at which jth rim hook of
T starts. However, as there are no further restrictions on X, there are no further
restrictions on 7. Finally, by Lemma 4.2.5 we know that sgn(X)=sgn(T"). Therefore
8, (15, €y ) generates all pairs (L, X), with sign, where X is a rim hook tableau of
shape A with rim hooks R,R,,...,R, such that for all ¢, 1<t <s, R, haslength r,, and

such that if ¢, =¢;, i <, then the northeasterly line at which R, starts is strictly above
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the northeasterly line at which R; starts. Equivalently, the start of R; is in a column to

the right of the start of R,. This follows from the fact that the end of R, is at the end of a

row of the rim hook tableau consisting of the rim hooks R,,...,R,. This final point brings

us to the statement of the theorem. QED.

We illustrate a typical term generated by s, (&,,....&, ) when 4 =16,13,10,7,5.

Let the multiset m consist of the Lyndon words below.

sy
[a—
|

I 7 4=h
0909 ly=ly=Ls=Lg=L,=Ly=Lo=L1y={

@@ £12:£13=£14=£15=£16=£17:£18

h— e | 9 W

4 4|5 |12

314|516 |7 |13

314|516 |7 |8|1|15|16

2 2(5(6|7|8|9 9 (10 1017 |18

112 2161718 8|9 9 |10 10|11 11 11 11

It can be paired with the rim hook tableau above. The weight of the term is given by the

weight of the multiset, which is (,,8,,a,,a,, ) (2,,8,4,53,, ) (a,,)'. The sign of the term is

given by the sign of this tableau, which is (~1)* =+1. Note that rim hooks which

correspond to the same Lyndon word are layed down so that if £; =£,, j>1i, then the

start of the jth rim hook is in a column to the right of the start of the ith rim hook.
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Having proven Theorem 4.3.1, we examine its various consequences. The most
satisfying consequence is arrived at upon setting @, =0 forall i # j, 1<i,j<N. Then
the only Lyndon words possible are g,,...,a,y, and therefore any rim hook tableau
generated by s, (&,,...,€ ) consists of rim hooks of length one, which is to say it is a
standard tableau, and has positive sign. For all i, 1 <i <n, the ith square of this standard
tableau is associated with a Lyndon word a,, , and i < j implies that k; <k;.
Furthermore, if i < j and k; =k, then the jth square is located to the right of the ith

square, as shown below.

Associating the letter k; to the ith square forall i, 1<i<n, and setting x, =gq,, forall
i, 1<i <N, recovers the fact that s, generates the column strict tableaux of shape 4.
As usual, we may consider what Theorem 4.3.1 says about the special cases
A=nand A =1". If A =n, then given a multiset m of Lyndon words ¢, <{, <--< ¢,
there is exactly one rim hook tableau of shape n with rim hooks of length r,,...,r,, and
this tableau has positive sign. Therefore sn(§1,...,§ N) generates all multisets of Lyndon
words, and we have k (&,,...,€, ). If A =1", then given a multiset m of Lyndon words
£, £¢, <--< /4, there is exactly one rim hook tableau of shape 1" with rim hooks of
length r,,...,r,, and this tableau has sign sgn(Vv), where v is the partition that gives the

lengths of the Lyndon words. If the Lyndon words of each multiset are listed in
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nonincreasing order, then it is possible to show that this function equals e,(£,,...,£) by
performing an involution very similar to the second involution that we employed in our
proof of e,(&,.....Ey) = D fu(&.-...&x) at the end of Section 3.3.

The method by w#l:;ch we proved Theorem 4.3.1 can be used to give combinatorial
proofs of several other results. One of these is a theorem which Goulden and Jackson
[GJ] recently reexamined and which we as Theorem 3.1.5. If we let &,,...,&, be the

eigenvalues of AZ = (a‘.jz j) > then this theorem states that the coefficient of z z,---z,

18i,j
in Y K7L h, (&, €y) equals Imm_, A. Our proof of Theorem 4.3.1 gives a
cor:l;inatorial means of demonstrating that the coefficient of z;z,---z, in
S KLk (&, Ey) equals the coefficient of z,z,-+zy in s, (§,,....Ey). Butthe
svt::tement of Theorem 4.3.1 shows that the coefficient of z,z,---zy in s, (&,,....£, ) can be
gotten by considering those multisets of Lyndon words which consist of disjoint cycles.
These cycles are all distinct, and therefore there are no restrictions on the rim hook
tableaux, except that the lengths of the cycles match the lengths of the rim hooks. But
these are precisely the objects generated by ImmZZ A when y*(0) is interpreted in terms
of rim hook tableaux.

Similarly, the method by which we proved Theorem 4.3.1 can also be used to give
a combinatorial proof of the equation y”(a)= Y 1n*(@)K}';. This equation relates the
characters y* = ch"‘(sﬂ) and n* = ch"(hl) ang{ins the image of the Jacobi-Trudi identity
sP = ;th;fﬂ under the map ch™ defined in Section 1.1. The character table 1* (&)
has an interpretation due to Egecioglu and Remmel [ER2] as the number of ordered
brick tabloids of shape A and type . The product 1* (a)K;fﬁ generates all pairs
consisting of an ordered brick tabloid of shape B and type A, and a special rim hook
tabloid of shape 4 and type «. The sign of such a pair is defined to be the sign of the

special rim hook tabloid. As in the proof of Theorem 4.3.1, an involution based on

Lemma 4.2.3 cancels away many of these pairs, and a bijection based on Lemma 4.2.5
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associates the pairs that survive with rim hook tableaux. The latter bijection is illustrated

below.

l 2] | |
1
C 5]
]
| 1| C 3]
I I S I

| | | U
DN Uy | U
n
wn
wn

In a combinatorial proof of x”(x) =Y n*()K}'; , the bricks of the ordered brick

A>n

tabloids play the role that cycles do in our combinatorial proof of Goulden and Jackson's
theorem.

This last proof, using ordered brick tableaux, can be used to give a combinatorial
proof of the fact that if T, is the set of rim hook tableaux of shape f and with rim hooks

of length ry,....7,, if T, is the set of rim hook tableaux of shape f and with rim hooks
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of length Patty ol oe(ay andif 0 €S, then ZSgn(t): ZSgn(z‘). Specifically, given
teTy €T,

our proof of ¥?(c)= Z n* (@)K}, itis enough to observe that if o€ S,

(a)’
Arn

number of ordered brick tabloids of shape A and with bricks of length Fiseees Py €Quals

then the

the number of ordered brick tabloids of shape A and with bricks of length r o)+  o(e(a)”

The disadvantage of the argument above is that it does not apply to the rim hook
tableaux directly, but to a more numerous set of objects, namely, pairs consisting of an
ordered brick tabloid and a special rim hook tabloid. However, if we analyze the special
case when o €S, isa transposition 0 = (ii+1), then we are led to an argument due to
Stanton and White which applies directly to the rim hook tableaux [SW][W]. Remark
4.3.2 provides a sketch of their argument. We include it for the sake of completeness. It
is applicable to the rim hook tableaux generated by s,(&,,...,&, ) in Theorem 4.3.1 and

may be used to generalize the Knuth-Bender correspondence for column strict tableaux.

REMARK 432 Given o =(ii+1), we demonstrate that ) sgn(r)= > sgn(z).
1€Tyy teT,

To do this we define subsets U, < T,, and U, c T and a sign reversing involution from

T, onto T,, which demonstrates that ngn(r) = ZSgn(z‘). Likewise, our construction
teTy 1ely

allows us to argue that ZSgn(t) = ZSgn(z‘). We also define a sign preserving

tel, 1T,

involution from U, onto U,. It then follows that ngn(r) = Y sgn(r)= ) sgn(r) =
€Ty 1eUy 1€l
ZSgn(z‘).

€T,

Suppose that # € T, is a rim hook tableau with rim hooks R,,..., R, that start at

(Sl")EXNE""’(S‘(“)")EXNE and end at (s, +7, _1"‘)E><NE”"’(SZ(¢1) ) 1,»‘\)EXNE. We

construct a rim hook tableau 7 with rim hooks R,..., Ry, such that R, = R, for all
J#1i,i+1 and such that either 7 € T, and sgn(f)=—sgn(¢), or 7 € T, and
sgn(7) =sgn(?). In the first case it is understood that t,f € T,, — U, and in the second

case it is understood that te U, f e U.
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Given t Ty, if s,+r,+1#s,, and s, +r,, +1#s;, thenlet f € T, be the rim
hook tableau for which the squares of R; and R,,, are on the same northeasterly lines, and
likewise, the squares of R,,, and R, are on the same northeasterly lines, as illustrated

below, where i =4.

515 4 |4
5 |5 |5 4|4 |a
5|5 4|5
415 |5 4|5 1|5
4 a5 |5 4|14 |4a|a
5|5 4 |4
5|5 |5 4144
5 |5 4|s
. m e
4|5 |5 4|5 |5
4 |44 |4 4|45 |5

It can be shown that in this case sgn(7)=sgn(¢) and we say that te U,,, T €U,. We
think of these instructions as changing the order of the ith and i+ 1st bricks in an ordered
brick tabloid, as discussed above. They deal with the case when the ith and i+ 1st bricks
belong to different rows of the ordered brick tabloid.

If s,+r,+1=s,,, then let f be the rim hook tableau for which R, and R, are

defined so that one starts at (s;,*) e And ends at (s, 47, —1,+) oo and the other starts

at (8, +risyo*)p, e and ends at (s, +r,—1+), . Likewise, if 5,,, +r,,, +1=y5,, then let
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f be the rim hook tableau for which R; and R,,, are defined so that one starts at

and the other starts at (s,,, +7,,*), . and

(Si+1")ExNE and ends at (S,v+1 +r, -1, ') ExNE

ExNE’

ends at (s, +7, —1+), .. Wemay understand these instructions as changing the order
of the ith and i+ 1st bricks in the case when they belong to the same row of an ordered
brick tabloid. It can then be shown that either 7 € T and sgn(7) =sgn(t), or f € T,; and
sgn(7) = —sgn(¢). In the first case the number of vertical crossings does not change, as

illustrated below, and we say that te U, f e U,.

4 | 4 4 | 4
4 |4 1|5 4 |4 |4
5 —- a
515 4 | 5
515 |5 5|5

515 4 |4
5|5 |5 4|5 |s
5 |5 5|5
5 | ——
4 14 |4 5|5 |5

It is this last case which may be said to define T,, —U, and U, and to show that

2sgn(t) = ngn(t). An analogous chain of thought defines T, - U, and U, and

1eTy tely
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makes it possible to claim that zsgn(z‘) = ngn(r). Moreover, it can be shown that

- tel, teT,
f =1 in each of the cases that we have considered. It then follows that there is a a sign

preserving involution by which Y’ sgn(r)= ) sgn(r) and therefore Y sgn(t)= ) sgn(?).
tely €U, rely €T,

QED.

The conspicuous role of the Lyndon words in Theorem 4.3.1 and the fact that
x*(0) has a combinatorial interpretation in terms of rim hook tableaux together suggest
that we could have used the equation s, (&,,...,& 2 2 (0)py(&p--rs &y ) to prove
Theorem 4.3.1. This is the approach that worked in Ch;;ier 3, and indeed, this is how we
first conjectured our result. Although it seemed likely that this approach would succeed,
we never determined whether in fact it does succeed. Instead we ended up taking a

course that appears to require less effort. To anyone interested in starting from the

equation s, (&,,....&y ) = ZZ (0)py(&,s--. €y )» we provide three recommendations.

oeS

First, in any sequence of cucular walks, with labels, order the walks by the Lyndon word
of which they are products, as we did in Theorem 3.3.1, and construct the rim hook

tableaux so that the ith hook has the length of the ith walk. Second, study the equation

1 . . o .
K, 5= ~ Z 2 (o)n* (o), which can be given a com-bi-natorial interpretation. Apply

* o€S§,

the involution used in this interpretation to those rim hooks which correspond to circular
walks that are products of the same Lyndon word and start on the same northeasterly
lines mod r, where the Lyndon word has length . Third, remove the labels from the
surviving objects with the help of the following lemma: "Let T be a rim hook tableau of
shape A > n with rim hooks R,,...,R, such that forall i, 1<i<m, R, starts at (r,,+),, .
and ends at (s,.,*)ExNE. Let 7€ S, be a permutation for which r, =r; or 5, =5, or

r; =5;+1 implies that i < j if and only if 7(/) < 7(j). Then there is a unique rim hook
tableau 7 of shape A with rim hooks Q,,...,Q,, such thatforall i, 1<i<m, Q starts
at (r;, and ends at (s,,+) Moreover, sgn(7") =sgn(7"")."

)E NE ExNE'
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SECTION 44 IRREDUCIBLE REPRESENTATIONS OF GL,(C)

The most important fact about the Schur function s, ( £,k N), evaluated at the
eigenvalues & ,...,&, of an N X N matrix A € GL(C), is that it is an irreducible
character of the general linear group GL, (C), thatis, it is the trace of an irreducible
representation of GL, (C). Itis actually possible to describe the entries of these
representations, and hence, of their traces. The reader interested in the symmetric
functions of eigenvalues will surely be curious to see an explicit description of these
representations. However, they are not to be found in many modern textbooks. In order
to satisfy this curiosity, we provide a description taken from Littlewood's book The
Theory of Group Characters [L]. We refer the reader to this book, and also to a paper by
Garsia and McLarnan which has proven helpful [GM]. When A is a hook shape, then
this leads to a description of s, (&,.,...,& N) that is quite straightforward, but otherwise this
description becomes rather complicated. Our goal in this section is not to prove any new
result, but simply to include one last description of the Schur function sl(él,..., 4 N) and
thereby complete the combinatorial picture presented in this thesis.

The combinatorial objects that we will work with typically have a shape A > n.

We use an east by north coordinate system to refer to the squares of A with, as shown

below.

(1.3)gxw

(1’2 )ExN (2’2)EXN

D eew {(2:)gn
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A A-tableau W is an assignment of the letters 1™2™---N™ , m, + m,+... +my =n,to
the n squares in the shape A. A column strict tableau T of shape A is a A -tableau T
such that if i <i” and j < j’, then the letter which T assigns to (i, j),,, is less than or

equal to the letter which it assigns to (i’, j),, . and the letter which it assigns to (i, f)

ExN? ExN

is strictly less than the letter which it assigns to (i, j*) That is, the letters of T

ExN°®
increase strictly as we go up a column, but increase weakly as we go across a row from
left to right. An injective tableau U of shape A is a A -tableau U for which n =N and
m, =m, =...=my =1. A standard tableau Q of shape 4 is a column strict tableau Q of
shape A that is an injective tableau. Consequently, the letters of Q increase strictly as
we go up a column, and also increase strictly as we go across a row from left to right.
Given two A -tableau T and U of the same shape A, let ¢(i, j) be the letter that T
assigns to each square (i,/),,, €4, and let u(i, j) be the letter that U assigns to each
square of (i, ), ., € A. Then we define G,[T,U] = Hat(‘.‘j)_uu'j). We may think of

(i) gxn €A
G,[T,U] as a means of comparing two A -tableau T and U square by square. In the

example below,

1|7 1| Y
3|1 515
1|2 4 |2

G, [T, U] = apa,a,5a, 0.
Z, is the set of bijections B:(i, ), ., — (iﬁ’j/’)gxzv on the squares of the shape A

such that if (i, j),, . # (k,[), ., then (iﬂ,j)ExN # (kﬂ,l)ExN. Welet BeZ, actona
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A—tableau T by having B(T') denote the unique A—tableau with the property that if a
letter appears at (i,), , in T, then it also appears at (iﬂ’jﬂ)gxzv in B(T). Indeed, if we
fix an injective tableau T, then the elements of Z, correspond to the permutations

B= T30 such that Oy permutes the letters in the rows of T, but keeps the columns

fixed, creating an injective tableau J,, and then 7, permutes the letters in the columns of

J g, but keeps the rows fixed, giving rise to B(T), as illustrated below, where o, =(35)
and 7, =(154)(23):

4 | 7 4 | 1 | PO
315 o 513 . 4 | 2

B B
1 2 1 |2 5 3

We define the sign of S € Z, to be sgn(f) = sgn(rﬁ). In the example above,
sgn(B)=—1. We also define Z;' as the set of bijections &:(i, /),y = (ia»Ja) g,y O the
squares of the shape A such that if (i, j), ., # (k.)zy then (i), ), # (Koly )y I

o € Z;', then let &(T) denote the unique A -tableau with the property that if a letter
appears at (i, f),, ; in T, then it also appears at (i, j, )., in @(T). Indeed, if we fix an
injective tableau T, then the elements of Z;' correspond to the permutations ¢ = 0,7,
such that 7, permutes the letters in the columns of T, creating an injective tableau K,

and then o, permutes the letters in the rows of K, giving rise to o(T'), as shown below,

where 7, =(12)(34) and o, =(25):
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4 T 3 K, 3 a(T)

The sign of ¢ e Z' is defined to be sgn(e) = sgn(7, ).

In comparison with Littlewood [L], we point out that given e Z,, B =1, Oy, he
does not consider f as a single bijection, acting on any A—tableau, but rather as a
product of two permutations 7 and o, acting on a fixed standard tableau T. Given T, if
T € S, is a permutation that permutes the letters in the columns of T, but fixes the rows,
and if o €S, is a permutation that permutes the letters in the rows of T, but fixes the
columns, then it can be shown that there exists a unique € Z, such that = 7,0, and
B = 10. Moreover, sgn(7) = sgn(rp). Likewise, given f§ € Z, , it can be shown that for
any standard tableau T there is a unique permutation 7 € S, that permutes the letters in
the columns of T, but fixes the rows of T, and a unique permutation ¢ € S, that
permutes the letters in the rows of T, but fixes the columns of T, such that f = 70. Itis
important to point out, however, that both 7 and ¢ are defined with respect to T', and
therefore it is difficult to think of 7o as a single action, whereas 7 is defined with
respect to oy (T), as we mentioned above. It is for this reason that we prefer to work with
elements of Z, .

We are now in a position to describe the irreducible representations of GL,(C)
which Littlewood [L] constructs in his book. There is one irreducible representation for
each partition A > n, where n>1and ¢(A)<N. The degree of the A th irreducible

representation is given by the number of column strict tableaux of shape A with letters

from 1,...,N.



We start by drawing special attention to the cases when A is a hook shape or

A =22, as the description of the irreducible representations is then especially

straightforward [L].

THEOREM 4.4.1 Fix A>n,where A=al"°, 1<a<n,or A =22. Fix
N 2 4(A). Let t,,t,,...,t, be the column strict tableaux of shape A with letters from
1,...,N,andforall i, 1<i<s, let 1"2"...N** denote the type of t,. Let

A= (aii)ls- <y €CLL(C), and let M, (A) be the s x s matrix with entries
£

MA(A)i,j = z _1—'GA[ﬁ(ti)’tj]' sgn(ﬁ)

TR
ﬂezlzllzz! iy!
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where 1<i,j<s. Then M, (A) is the irreducible representation of GL(C ) associated

with the partition A .

We may use the above theorem to consider some examples of representations of

the general linear group GL,(C). The simplest of these occurs when n=1and A =1.

Order the column strict tableaux of shape 1 so that ¢ has the letter i, and note that

i!i,!-++iy!=1. Then Z, has a single element id and therefore M,(A),; = G,[4.t;|=a;.

This means that M,(A) = A, and in particular, for all A,BeGL,(C), it is true that
(A)(B)=(AB).

If A =1", then there is a single column strict tableau ¢, of shape 1V, and
[lb-iyt=1forall i, 1<i<s. The fact that ¢, consists of one column of length N

means that each element 8 € Z , corresponds to a permutation 7, € S, such that

sgn(f) = sgn(rﬂ). Therefore M, (A),, = XlGA[,B(z‘1 ),tl]sgn(ﬁ) =

ﬂEZlN
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Za,(l)‘la,(z)_z---at(N)'N sgn(7) =detA. We have that M ,(A)=(detA), and in
TeSy
particular, for determinants it is indeed true that (det A)(detB) = (detAB).
If A =17, then there are (’,‘:’ ) column strict tableaux of shape 1%, and ij!i,!--iy! =1

forall i, 1<i<s. If ¢, consists of the letters x, (i) < x,(i) <...< x,(i), and ¢; consists of

the letters x,(j) < x,(j) <...< x,(j), then

M,.(A),; = zax,m(n.xl(nax'a,(i).x:m‘"“x,(,)(i).x.(f)Sg“(f) - det(an(f)~x.(f))15u,vsn'

TeS,

The entries of M, (A) are precisely the determinants of nX n minors of A.

If A =n, then there are (V*7™') column strict tableaux of shape n. The fact that
t, consists of one row of length N means that each element f§ € Z , corresponds to a
permutation 7, € S , and sgn(B) =+1. If 1, consists of the letters x, (i) < x,(i) <

..£x,(i), and ¢, consists of the letters x,(j) < x,(j) <...< x,(/), then

1
M,(A),; = X g 1 P 00 05 () Fry O () T T 1 'per(ax_(i)_xi(j])lgws"
Bliphi ! !

re$, l-:

The i, jth entry of M, (A) may be thought of as comparing permutations of the sequence
x, (1) < x, (i) <...< x, (i) with the sequence x,(j) < x,(j) <...<x,(j). In particular, when
{ = j this brings to mind the circuits by which we interpret 4,(£,....,£,) in Theorem

2.2.2

PPN

Of interest to us, with regard to this thesis, are the traces of the irreducible
representations, because the trace of the irreducible representation M, (A) equals
5, (&,,....,&y). For the cases that we have been considering, when A is a hook shape or

A =22, we can record the following theorem [L].
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THEOREM 4.4.2 Fix A >n,where A=al"*,1<a<n,or A =22. Fix

N 2/{(A). Let t,,t,,...,t, be the column strict tableaux of shape A with letters from

L...,N,andforall i, 1<i<s,let 1"2"---N™ denote the type of t,. Then

52 () = X =G, [Bli)1,]-sen(B)

pez, b Loy !
1<i<s

The above expression allows us to think of the Schur function s, (&,,...,&, ) as
comparing, for all column strict tableaux ¢,,¢,,...,¢, of shape A, the tableau ¢, with all of
the tableaux f3(z;) that are gotten from it by actions 8 € Z,. For example, if A =n, then
this gives us the Vere-Jones identity that we mentioned in our discussion of Theorem
3.1.1.

In general, however, the expression that Littlewood gives for M, (A) is a bit more
complicated, as is the trace tr(M N (A)) =5,(£,,....Ey). Given a column strict tableau ,
of type 112%---N**, let {. denote the standard tableau gotten from ¢, by replacing the
occurrences of g with the letters i, +i,+...+i _ +1,...,§ + i +...+i_ +i, from left to

right, forall g, 1< g < N. The following results are taken from Littlewood's [L] book,

albeit presented in a notation different from his.

THEOREM 443 Fix A>=n, N2> Z(l). Let t,t,,...,t, be the column strict
tableaux of shape 2. with letters from 1,...,N,and for all i, 1<i<s, let 1727... N
denote the type of t,. Forall j, 1< j<s, let B; denote the set of finite sequences
(B By B Bw), 20, such that B, =ide Z;' andif 1< h<r, then B, eZ;,

B, #id,and ﬂhﬁh+l~--ﬂ,(?j) is a standard tableau. Let A = (a,.j) y € GLy(C), and let

18i,j<
M, (A) be the s xs matrix with entries
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M, (A)i,j = ﬁugzl,. [mGA[ﬁo(z‘i),ﬁlﬂz...ﬁr .[d(tj)],(_l)’gsgn(ﬁk)]
(By.B....B, .id)e8;

where 1<1,j<s. Then M, (A) is the irreducible representation of GL(C) associated

With the partition A . Furthermore,

Sx(éx,...’ézv) = pz (il—l—;%.—[_lGA[ﬁo(ti)’ﬁlﬁf”ﬁr'id(ti)]'(“l)rl—r:[Sgn(ﬁk)]
(ﬁl,ﬁz.ﬁfﬁz,{id)eai e £=0

1<igs

If A isa hook shape or A =22, then for all j, 1< j<s, itis not too hard to show
that the set B; consists of the sole element (id), and the above theorem reduces to
Theorems 4.4.1 and 4.4.2. But it is true even in the general case that for many j the only
element in B, is (id), in which case the entries M, (A), ; can be calculated as in Theorem

4.4.1. A case where B j is not trivial is when t; is the column strict tableau

Then B; contains not only (id), but also the element (B,,id) where ﬁl(tj) is the column

strict tableau shown below
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With regard to this thesis, it is not clear to us whether the formula for
S, (51,..., 4 N) in Theorem 4.4.3 tells us anything more than if we use an appropriate

interpretation of y*(o) with the formula

1
WG b)T B T A

w=lm2"2 NN

from Section 3.1, due to Littlewood [L]. However, on behalf of Theorem 4.4.3 we may
point out that the structure of the set B; is not as daunting as it may at first seem. The
reason is that given standard tableau T and U, if there exists a sequence f,5,,....3, of
elements of Z;' such that U = §8,3,---B,(T), then there does not exist any sequence
6,.6,.,....6, of elements of Z;' such that T = 6,0,---6,,(U).

We may also remark that irreducible representations of S, may be gotten from
entries of M, (A) in the following way. Let A =n=N. If ¢,t,,...,¢, are the column
strict tableaux of shape A, then let #,2,,...,¢, be the standard tableaux of shape A. For
all o € Sy, define M(0),; =1 if j=o(i) and M(0),; =0 if j= o(i). If we set
C,(0),; =M, (M(0)), , forall i, j, 1<i,j<d, then C,(0) is an irreducible
representation of S,. In fact, {C A(G)} ..y are the irreducible representations of Sy

known as Young's natural representations of S,.
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It is evident that the irreducible representations {M ‘(A)}fs:"s . of the general
linear group GL ,(C ) capture a greater amount of combinatorial information than do the
irreducible representations {C A(0‘)} ..., of the symmetric groups S, 1sn<N.
Analogously, the symmetric functions s, (£;....,€y) = tr(M, (A)) capture a greater
amount of combinatorial information than do the irreducible characters
2" (0)=u(C,(0)).

The representations of GL ,(C) that we have described in this section appear
rather straightforward when A is a hook shape, but in general seem overly complicated.
Historically, the representations {M J(A )}1157.5 y of GL,(C) came later than the
representations {C 1(0‘)} 1., of .. Itis the combinatorics of the symmetric functions
which ultimately helped make possible the representation theory of S,. But evaluating
these same functions at the eigenvalues & ....,€, of an N x N matrix A, as we have done
in this thesis, may present clues as to how more straightforward representations of
GL ,(C) might be discovered. Such representations would in turn simplify the
representation theory of S , and provide us with deeper intuition about the symmetric

group and the symmetric functions as well.



CHAPTER 5
CONCLUSION

Our goal in this thesis has been to evaluate six bases of the symmetric functions at
the eigenvalues & ,...,&, of an N X N matrix A. We have presented four combinatorial
interpretations for the homogeneous symmetric functions hn(él,..., &y ) , two for the
forgotten symmetric functions f, (£,,...,&y ), two for the Schur functions s, (&;.....&y ),
and one each for the elementary ¢,(&,,...,&y ), power p,(&;,...,&y ), and monomial
m,(&,,...,E,) symmetric functions. In each case the specialization a; =0, i # j,
recovers the usual definitions of the six bases.

Surprisingly, of all the six bases it is the basis of the forgotten symmetric
functions which has arguably the most elegant interpretation upon evaluation at the
eigenvalues £ ,...,&, of A. Theorem 3.3.1 describes the forgotten symmetric functions
5 (él N N) in terms of Lyndon words on an alphabet of upper case and lower case
letters. It is satisfying to observe how these functions interpolate between the closed
walks generated by p,(&,,...,&y) and the multisets of Lyndon words generated by
h,(,.....Ey). It is true that the bases p,(&,....&x ), m(&h-..Ey ), and ¢, (&;....,Ey) also
have elegant combinatorial descriptions, but these bases are all multiplicative and
therefore no such interpolation takes place. Furthermore, the terms of f, (51,...,5 N) all
have the same sign sgn(4), and this is not true of either s, (&,,...,&y) or m, (&,,....Ey).
The prominent role that Lyndon words play in this thesis draws further attention to the
forgotten symmetric functions. It seems worthwhile to examine the relations between the
homogeneous symmetric functions and the forgotten symmetric functions with the free
Lie Algebra, the free monoid, and the Poincaré-Birkhoff-Witt theorem [G]. Indeed,

Lyndon words on an alphabet of upper case and lower case letters arise in the study of the
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hyperoctahedral group B, [B]. In summary, we suggest that the forgotten symmetric
functions no longer suffer the neglect that they have in the past.

Another surprise of this thesis is the grace with which Theorem 4.1.1 and
Theorem 4.3.1 generalize the usual definitions of the Schur functions as a quotient of
alternants and as a generating function for column strict tableaux, respectively. The fact
that Schur functions s, (&,....,&, ) are characters of the general linear group GL,(C)
suggests that these results may be helpful in the search for more satisfactory
representations of the general linear group and also the symmetric group.

Although the results of this thesis hold for arbitrary A € GL,(C), the matrix A

may be profitably specialized. For example, suppose that A is the matrix below, in

rational canonical form.

b 1 0 0
b, 0 0 0
A=l i 0 1 0
by, O 0 1
b, 0 0 0)

If the eigenvalues of A are &,...,&, then b, =(-1)""¢(&,....E,) forall i, 1<i<N.
The only cycles with nonzero weight are a,,a,,---a, =(-1)"¢/(&,,...,,) where
1<i<N. The fact that this is true for all values of £ ,...,€, means that by specializing
in this way we are expressing any symmetric function F (515 N) in terms of the

elementary symmetric functions {eﬂ(él,...,é,v)} . For example, if F is f,, then

H-n,n20
from Theorem 3.3.1 we find a combinatorial interpretation for the transition matrix in the

equation f, = ZM( f.e) 1,,€ - Applying the involution @ then gives us a long sought

Lrn

interpretation for the entries of the transition matrix in the equation

m, = zM(m,h)mh“. Likewise, by Theorem 3.4.1 we find a combinatorial

u>n
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interpretation for the transition matrices in the equations m, = ZM(m,e) apu€y and
fi= ZM( foh) g h, . In a similar spirit, this specialization tr;r:;forms the quotient
formu“l;nof Theorem 4.1.1 into a determinantal identity in terms of Schur functions of
hook shape. If A isdefined as above, then (A" )jj = S et jmio) 0 whenever 1< j <k, and

(A*), =0if j>k. Therefore

Sl = det(s(l,+5;—(}—1)).1(j_l) )lsi'jSN/(eoel .. .eN_I )

with the understanding that if A, + 6, =0, then S = (-1, and otherwise, if
j> A, +96;, then S(hs e o)) = 0. We emphasize that these results hold independently
of A because they are true for all values of &,...,£,. This makes all the more
remarkable the power of specialization. It is our hope that specializing the matrix A in
this and other ways will add a new tool to Algebra's tool chest.

Finally, this thesis suggests that evaluating symmetric functions at the eigenvalues
&,....,&, of a matrix A offers a unifying framework for the discussion of many of the
results of matrix algebra. If nothing else, it provides a way of teaching these results that
makes them tangible, but also makes evident their place with regard to deeper algebraic

issues, such as the theory of representations. The research problems suggested by this

approach are concrete, reasonable, of beauty, and of consequence.
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APPENDIX: SCHUR FUNCTIONS GENERATE COLUMN STRICT TABLEAUX

The purpose of this appendix is to document a new proof of the old fact that the
Schur function s, (x,,....xy ) is a generating function for the column strict tableaux of
shape 1. We take the definition of the Schur function to be the quotient of alternants, and
then expand it as an infinite series. All but finitely many of these terms cancel away, and
the surviving terms correspond to column strict tableau.

We define the Schur function to be the quotient of alternants
8, (Xp0enxy) = det(x,.‘"+5’ )lsi,jsN/det(xi&i)

aim is to give a combinatorial proof of the following result.

,as in Section 1.1. Here 6, =N —j. Our
1<i,jsN

THEOREM A.1  Let U be the set of sequences v =(V,, V,,...,Vy) for which
V;20,1<isN,and v+ V,+..+vy, =n. Let K, , be the number of column strict

tableaux of shape |1 > n and type 1"2"---N"* | Then

By +8; §; v v v
S\, X =det(x ! ') det(xl) = E K DA AL
“( ! N) ‘ 180, jSN P NisijsN ki X2 N

vel

The proof that we present is new in that it does not require that we first cross

multiply by det(:cfS ! )1 o We start by recalling from Section 1.1 the well known
<i,j<

identity H(xi -x j) = de:t()c,.‘s ’)

1Si<j<N

- Our idea is to expand the denominator
<i,j<

Yix,—x j) as an infinite series. We then divide top and bottom by x,x, --- x,,, which
1Si<j<N

serves a technical purpose. This gives

1
)lsi'jSngkjSN (xi - Xj)
e ‘
1sijsh (xPxdxgt ) g (11— x;/x)

Hj+;

i

S, = det(x

= det(x.“ i*9
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1

15i,j<N (xl‘ﬁxfz e xOn

—det( kit ’)

- 2 -
+5, X; X XXy X
=| det(xf"") 1+ 20y ] 122 oy
L ! lsi,jles;.l;,[sN X x,-2 (51+1x252+1 xz~+l)
[ 2 |
48+ X; 1
= det(x{‘f*’ ) [T |1+ ’+——+ :
sijs o ghoel X x? (xf‘”xf’“ xg”“)

Consider the left factor of the last product. We give a combinatorial interpretation for the
infinitely many elements in this factor, and then give a bijection to show how they cancel
away, leaving only finitely many. Those that are left are all divisible by

Oy +l

641 .8+
xll X, Xy

, which we divide away, and the terms that we are left with are
interpreted as column strict tableaux.

We use an E X N coordinate system to locate the squares of an augmented shape

Ayvupu. Forall j,1<j<N,the jthrowof A, Uu extends the jthrow of u

|(0,5)
Frkow

by N +1—j squares, as shown below.

(23)|1,3)

(0,3)[1,3)

('3:2)

(-2)2)

(-1,2)((0,2) |(1.2) |(2,2)

('4s1)

('3s1)

I(-Z,T )l(-T 1)

(O,'I)J('I 1)

(2,1)

+1+,u,x62+1+p,,
' Tete)

filling the o(i)th row of A, U with i's, as shown below.

Sy +l+py

We interpret the term sgn(O')x‘Sl M)

x .+5j+1)

from det(x,.“ A
<i js
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3
515
1111111

We keep in mind the labels i associated with the o(i)th row because they determine the
sign of the monomial and because we are about to change the contents of the rows. This
is because the quotients x; /x; work as raising operators and (x i /x‘.)k will be understood
as replacing k of the elements of the row of i's with j's.

To make sense of this last statement, consider a term in our expression for S, and
the quotients x; /x; that contribute to it, where i is fixed and i < j. The product of these
quotients may be written H(x ; /xi)kj . In the row with the i's remove the rightmost

ij I's, or as many as thjere are if there are fewer. Write in their place the letters i +1
P
tlhi‘i)’:lgh N, with k; of the j's, starting with the N's at the rightmost square of the row,

and weakly decreasing going from right to left, possibly extending beyond the leftmost

square of Ay U . Do likewise for all of the rows, as illustrated below.

3 4 4|4 4

5 45 5!

1 2 2121212 1(3]s
4 4141414145
2 Mz 21212)3]3
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This yields a description of s, as a sum of weights on an infinite set {X}, , of
combinatorial objects. The sign of each object is given by sgn( o).

Note that the squares outside of the augmented shape A, U are weighted
differently than those within it. If a letter jisin A, U u, then its weight is x;. If a letter
Jjistothe left of Ay L, then its weight x; /x; depends on the label i that ¢ has
assigned to its row. The most crucial point in the argument to follow is that if the row
with label j contains j, then that row does not extend to the west of the augmented
shape.

We now describe an involution X — X by which the objects of {X} .. cancel
away so that only finitely many are left, all with positive sign. Given X, for each square
(e,n),..y let X(e,n),, , be the letter which appears at that square. Look for pairs of
squares (e,n),,, (e,n+1),,, such that X(e,n), , >X(e,n+1); . If no such pair
exists, then set X = X . Otherwise, find the pairs for which e is largest, and among these
the pair such that » is smallest. Derive X from X by letting
X(c—1Ln)g,y =X(c,n+1),,, foral c<e, X(c,n+1),,y =X(c—1n),,, forall c<e,
and X(c,d),., = X(c,d),, forall other squares (c,d),, . This has the effect of
switching along northeasterly lines the letters in the nth and n + 1th rows that are to the
left of (e,n),,,. Inaddition, switch the labels on the nth and n+ 1th rows, setting
G ' (n)=0"(n+1), 3 (n+1)=0""(n),and E‘I(d.) =¢7'(d) for all other d, I<d <N,

as illustrated below, where e=0 and n=2.
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3 4141414

5 5(5

1 2121212235

4 4 |44 |a4]4|5

2 I_i__z_LZZZ33
3 414 |44
5 515

- 4lalals

1 (2228212 |3]4a]4]5
2 21212212133

Assuming that the pair (e,n),, ., (e,n+1),,, exists, we show that Xe {X},n
Are the numbers in the rows of X weakly increasing from left to right ? It is enough to
show that X (e —1,n),,, < X(e,n),,, and X(e,n+1),,, S X(e+1,n+1), . Thefirst
equation follows from the fact that X (e —1,n),, ., = X(e,n+1),, , SX(en)g.y =
X(e,n),.y- Assuming that (e+1,n+1),,, exists, we prove the second equation by
noting that X(e¢ +1,n),,, <X(e+1n+1),, . because otherwise the pair (e +1,1),
(¢+1,n+1), , would have been chosen instead of (e,n),, . (¢,n+1),,,. This
observation and the facts X(e,n+1),,, =X(e—1n),,, and X(e+Ln+1), , =
X(e+1,n+1),, , together imply X(e,n+1), , =X(e=1n),., SX(e+Ln)py <
X(e+1,n+1), . Note also that the labels 2 and n+1 are switched accordingly, and

therefore it is still true that for all j, 1< j <N, the letters in the row with label j are all

greater than or equal to .
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Observe that X and X have the same weight. This is because the letters involved
are not changed, but simply moved along northeasterly lines, which means that if they
were outside of A, U p, they stay outside, and if they were inside, they stay inside.
Furthermore, if j is the label for a row, then the number of squares outside of A, U 1
that are in the row associated with label j remains the same for all j, 1< j< N. Observe
also that X and X have opposite sign because o and @ do.

This construction of X from X defines an involution because X(e,n+1),,, =
X(e+1,n),, v <X(e,n),,, = X(e,n),,, and because all of the squares disturbed are
strictly to the left of e, except for (e,n+1),, ,, which is in the same column as (e,n)., .
but above (e,n), . Therefore (e,n),, .. (e,n+1);,, remains the pair of highest priority
and a second application of the construction returns us from X to X. In summary,

X — X is a sign reversing weight preserving involution.

What are the fixed points of the involution ? Only those objects survive for which
X(e,n),y < X(e,n+1),,, forall (e,n),, , (e,n+1)g,,. This property is what is meant
by the words "column strict": the letters increase strictly as we move north along a
column. We now note thatin X there is a column with N squares. It is the first column
to the left of the shape g, and the squares are (0,1),,y,.,(0,N),, . The letters
X(0,1);, 5> X(0,N), in this column must be all distinct, and they must be chosen
from 1,...,N. Therefore X(O,k)ExN =k forall £k, 1 £k < N. This is the crucial point, for
it implies by induction on k that 0™ (k) =k and therefore o is necessarily the identity
permutation. But recall that if a row is associated with & and the letter £ appears in that
row, then the letters in that row do not extend outside of the augmented shape A, U u.
Therefore, given a fixed point of the involution, no row extends outside of the augmented

shape. Furthermore, the letters in the & th row to the left of (0,k),, , must all be equal to

X(0,k),,.y =k, as shown below.
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5 5
4 4 |4
3 313|315
2 2122|245
1 111111123

This defines a unique way of assigning letters to the squares that are to the left of the

shape 1. The part of the weight of X that comes from these squares is x>+ x2™. .. xp*.

Moreover, sgn(X) = +1.

As for the squares in p, if X is a fixed point, then the letters in the squares of p
must define a column strict tableau. Each tableau occurs at most once, because the only
permutation that can be associated with X is the identity permutation. But each tableau
occurs exactly once, because if the letters in the shape 1 define a column strict tableau,
and the letters in the rest of A, U u are as described above, then X is fixed by the

involution.

Given any fixed point X, we may remove the squares to the left of u, which

taken together have weight xX*'x2*"...x»* and cancel x**"'x%*"..x%* with
o, +1 62+1 Sy+1 : : : . .
1/ x| ~xy' . The weight of what remains is given by the product of the weights of

the letters in the shape p. Therefore det(x,.“ o )1 . / det(x,-a ")
<i,j<

1<i, j<N

= ZK wo XX Xy, as in the statement of the theorem. QED

vel

The idea to divide by x,x, --- x,, belongs to Carbonara. It spares the need for an

additional involution.
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