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Abstract. This is the second of the series of three lectures given by

Vladimir Arnold in June 1997 at the meeting in the Fields Institute

dedicated to his 60th birthday.

Augury is not algebra. Human mind is not a prophet but

a guesser. It can see the general scheme of things and

draw from it deep conjectures, which are often borne out

by time.

A.S. Pushkin.

The goal of this lecture is to explain some mathematical dreams.

There are several parts of mathematics and they are considered as indepen-

dent parts or even as di�erent mathematics, like say the theory of functions of real

variables and the theory for complex variables which have been considered as com-

pletely di�erent sciences. The origin of the Moscow mathematical school is based on

a philosophical di�erence between real and complex mathematics discovered by the

mathematician Bugaev. He was one of the founders of Moscow Mathematical So-

ciety a hundred and �fty years ago, a philosopher and the father of the well-known

Russian symbolist poet Belyi. Bugaev observed that there were two main ideas in

philosophy, the idea of the predestination and that of the free will (you can move

your hand). He speculated that the mathematical version of the predestination

idea was the theory of functions in complex variables where a germ at one point (or

even a Taylor series at one point) contained all the information about the function

by means of analytic continuation. But in XIXth century the idea of freedom was

more important and Bugaev decided that one should develop in Russia the free will

mathematical version | the theory of functions of real variables. So he sent his

student Egorov and later Luzin to Paris where Lebesgue and Borel were working on
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2 V. I. Arnold

the real variables mathematics. This was the origin of the Moscow mathematical

school (which uni�ed the real and the complex ideas only much later).

In this lecture I will use rather consciously some mysterious relations between

di�erent mathematics. I shall try to explain the way I have used them in the

past. I hope in the future someone will make a theory of it. I am perhaps too

old to formalize all this. The ideas are just facts, not theories. I have no axioms

for what I shall describe, I have just examples, but I think these examples are

natural and interesting. I shall explain these ideas starting with �nite-dimensional

linear algebra models while the most interesting part is in�nite-dimensional where

we work in di�erential geometry, the manifolds replacing the vector spaces, the

di�eomorphisms replacing the linear operators and so on.

To start with the �nite-dimensional situation is very natural here in Toronto

since for the mathematicians Toronto is associated with the name of Coxeter. So I

start with the list of Coxeter groups. These are �nite groups generated by Euclidean

reections. They are described by Dynkin diagrams (we may call them in this way

since they were invented by other mathematicians), see Fig. 1. In singularity theory

there is an in�nite series of E's but we will not discuss them here. So on the left

there is the ADE list and on the right | diagrams with double lines including

(unfortunately) the last Weyl group, having a triple line.

These groups preserve some lattices and hence are called crystallographic. We

also have non-crystallographic Coxeter groups: the symmetry groups of the regular

p-gon, the icosahedron symmetry group and the hypericosahedron symmetry group

(Fig. 2). The hypericosahedron regular polyhedron H

4

lives in dimension 4 (the

index is the dimension of the space). It has a nice description given by Coxeter,

probably too nice to be put in Bourbaki's \Lie groups and algebras", who described
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Fig. 1: Crystallographic Coxeter groups.
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Fig. 2: Non-crystallographic Coxeter groups.



Symplectization, Complexi�cation and Mathematical Trinities 3

Any point in Fig. 1{2 represents a vector in the Euclidean space. Two points

are connected by a single line if the angle between the vectors is 120

�

, a double

line represents the angle 135

�

, the triple line | the angle 150

�

, the line \p" from

Fig. 2 | the angle 180

�

(1�

1

p

). Since we need only directions I omit the description

of rules for the vector lengths which is needed to restore the lattice generated by

these vectors. One can construct the reections in the mirrors orthogonal to the

vectors. The resulting group is �nite only in some special cases. Remind that a

transformation group is called irreducible if the space of action admits no proper

subspace invariant under all transformations represented by the group elements.

Any Coxeter group is decomposed into the direct product of irreducible ones acting

in mutually orthogonal subspaces. All the possible Dynkin diagrams for �nite

irreducible Coxeter groups are present in Fig. 1{2. So this list gives the classi�cation

of irreducible Coxeter groups which is one of the main classi�cation theorem in

mathematics

1

.

The simplest nontrivial Coxeter group A

2

is characterized by two vectors of

unit length with the angle 120

�

between them in the Euclidean plane (Fig. 3). The

complete number of mirrors is 3 and the group is generated by any two of them. So

A

2

is the symmetry group of the regular triangle. In the general case the generating

reections are described by the diagrams from Fig. 1-2. For instance for p = 5 on

Fig. 2 we have the symmetry groups of the regular pentagon, of the icosahedron

and of the hypericosahedron. The hypericosahedron is the convex body generated

by 120 vertices in S

3

, these 120 points forming a subgroup of SU (2) ' S

3

. This

subgroup is the preimage of the group of the 60 icosahedron preserving rotations

under the natural two-fold covering mapping S

3

! SO(3).
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Fig. 3: Generators and mirrors of the A

2

group.

The group A

k

corresponds also to the special linear group SL(k + 1) of (k +

1)� (k+ 1) matrices with determinant 1 (or to the unitary group if you prefer the

compact version). Similarly all the groups on the left of Fig. 1 have some lattices

invariant under reections, which are also classi�ed by the diagrams, and they

correspond to the simple Lie algebras as well. Thus B

k

corresponds to SO(2k+1),

C

k

corresponds to Sp(2k) and D

k

corresponds to SO(2k). They have separate

theories of eigenvalues, eigenspaces and Jordan blocks (for the unitary case just the

eigenvalues theory). For example the ordinary spectral theory of matrices is just

the theory of A, while those of B and D are the Euclidean geometries of odd- and

even-dimensional spaces.

The theory of Coxeter groups is a description of linear algebra as of a special

case of a more general theory. One can avoid to mention matrices, eigenvalues,

eigenvectors and can replace everything with the root system geometry of the series

1

Manin told me once that the reason why we always encounter this list in many di�erent

mathematical classi�cations is its presence in the hardware of our brain (which is thus unable to

discover a more complicated scheme). I still hope there exists a better reason that once should be

discovered.
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A. Now if you take some result from linear algebra or some result on the matrices

and reformulate it in terms of root systems then (with the meaning of notions

appropriately changed) this result becomes a conjecture you might try to prove for

all the root systems. Proving it you probably obtain some interesting and nontrivial

results for the other cases from Fig. 1.

Of course you can consider all the resulting theories as a particular case of

linear algebra (A

k

), namely as the study of the linear algebra of a vector space

with some additional structure. For example you might add an Euclidean structure

which leads to the consideration of only the matrices which preserve the �xed scalar

product (D

k

and B

k

). Or you might consider a symplectic 2-formmaking the vector

space into the symplectic space and then put into consideration symplectic linear

maps (C

k

). So all the theories of Fig. 1 can be considered as subtheories of the

linear algebra. But there is another way to think of them. We may consider them

as not children of the linear algebra but as its sisters. This linear algebra is just

the theory of one of the Coxeter groups series A. One can study the other Coxeter

groups of the series B, C, D. So one may formulate theorems-sisters for di�erent

series and with more work it is possible to �nd their versions for the exceptional

groups.

Now consider the in�nite-dimensional case. The classi�cation theorems extend-

ing the classi�cation of Fig. 1 are due to E. Cartan. The �rst case corresponding to

A

k

is the group Di�(M ) of di�eomorphisms of the manifoldM . The corresponding

Lie algebra consists of vector �elds with the standard commutator and the geom-

etry obtained in this way is called di�erential geometry. There are essentially 6

series of objects which are in the same relations to the group of di�eomorphisms as

the �rst Coxeter group (simple Lie algebra) A

k

to its sisters from Fig. 1. So there

are many other geometries. The �rst is di�erential. Next we have hydrodynamics.

It corresponds to the group SDi�(M; v) of volume preserving di�eomorphisms if

the manifold M is equipped with a volume element v. Its Lie algebra consists of

divergence-free vector �elds. Next we have symplectic geometry with the group

Symp(M;!) of symplectomorphisms. Its Lie algebra consists of locally Hamilton-

ian vector �elds. There are some more geometries: complex, contact and so on. Of

course all these geometric groups are subgroups of the �rst one but they are not

normal subgroups because the identity component of Di�(M ) is simple.

Now we extend the notion of sisters to our case and consider these in�nite-

dimensional groups as sisters. We start with some notions, ideas, theorems from

di�erential geometry and topology and then translate them into the language simi-

lar to that of the root systems which is independent of the initial group. And then

by the reverse process we try to understand what should be the symplectic version

of what we've been considering or what should be the complex version or any other.

The result sometimes is very easy to guess. For example we have the Lie

bracket of vector �elds from di�(M ) and the Poisson bracket of functions on a

symplectic manifold (M;!). So there is no doubt that the notion of Poisson

bracket for functions is connected with the usual bracket of vector �elds from

symp(M;!) � di�(M ), we call this connection the symplectization. But in other

cases complexi�cations, symplectizations or contactizations are highly nontrivial.

And starting with one theory it might be di�cult to �nd the analogs in another

theory.

I had discovered some examples for which I had no doubts that the answers-

conjectures obtained in this way were correct. But I was unable to prove them. The

only thing I was able to do was to use them. And I really have used successfully these
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conjectures many times. The corollaries are nontrivial theorems but the method

using which I arrived to them is rather illogical because there are no axioms to

de�ne exactly what the complexi�cation is or what the symplectization means.

There are only guesses at your disposal. You formulate conjectures and you can

try to prove them. Then �nally you or someone else prove the theorems and the

obtained theory con�rms the initial guesses.

One of the examples is what is known as Arnold conjecture in Lagrangian

intersection theory

2

. This was my attempt to extend to the symplectic case the

Poincar�e theory of index of mappings and vector �elds from the usual topology.

There you have the notion of �xed points and the Euler-Poincar�e theorem stating

that the sum of indices of all �xed points on a manifold always equals one and the

same number called the Euler-Poincar�e characteristic of the manifold. I was trying

to symplectize this and to guess what would be the answer. I shall not explain it

in details. The main idea of symplectization is to consider models.

You start with a manifoldM and you go to the symplectic manifold associated

with it which is of course the cotangent bundle T

�

M with the canonical symplectic

structure. To any submanifold N � M you associate a Lagrangian submanifold

L

N

� T

�

M corresponding to it. To symplectize the geometry of submanifolds of

a smooth manifold you have to consider the geometry of Lagrangian submanifolds

only.

This is the so called Weinstein principle. Alan Weinstein has formulated it in

the following way: every interesting object in symplectic geometry is a Lagrangian

submanifold. Since �xed points and their indices are certainly interesting, the

symplectization of the usual intersection theory in M must give the Lagrangian

intersection theory in T

�

M .

The next idea is to forget the model manifold structure and to go to a general

symplectic manifold. Thus in the sixties I was led to the conjecture that there

should exist symplectic and contact topologies, and I started to develop them

3

2

It seems that the �rst (correct?) proof of the \Arnold conjecture" for surfaces was published

(after my rejecting about four preliminary versions of this publication in seventies) by Eliashberg

in Syktyvkar in 1978 (there is still no English translation of the paper but Eliashberg has promised

to publish it soon). Later after the celebrated paper by Conley and Zehnder (1983) based on the

ideas of Rabinowitz there appearedmany important contributions by Chaperon, Chekanov, Floer,

Givental, Gromov, Hofer, Laudenbach, Sikorav, Viterbo, Weinstein and many others. Quantum

and Floer cohomologies are the byproducts of this development. Since the �rst attempts there

appeared di�erent formulations extending my initial conjecture which minorates the number of

the �xed points of an exact symplectomorphismof a compact symplectic manifold by the minimal

number of critical points of a function on a manifold. Last year I was told that the original

conjecture had been proved by Fukaya, Ono, Salamon, Ruan and others. However I was unable

to check these technically very di�cult proofs. Kontsevich was unable to report the details at my

Paris seminar, whereas all these proofs are based on his lemmas on stable curves.

All these results are very important in symplectic topology. But it seems to me that my

conjecture of 1965 on the number of �xed points of a symplectomorphism of a higher-dimensional

annulus extending the Birkho�-Poincar�e theorem as well as the conjectures on the symplectic

correspondences and on characteristic chords formulated in the paper \First steps of symplectic

topology" (1986) are still open.

3

I should stress that Gromov and Eliashberg, who were the �rst explorers of the new domains

discovered in this road, were using a di�erent notion of symplectic and contact topologies. They

meant the study of homeomorphism invariants of objects from symplectic and contact geometries.

And for me symplectic and contact topologies are the study of discrete invariants of the continuous

objects from symplectic and contact geometries, be they homeomorphism invariant or not. In the

same way I include into di�erential topology the discrete invariants of continuous (smooth) objects

notwithstanding their homeomorphism invariance.
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(Lagrange intersection theory, Maslov class, Lagrange and Legendre cobordisms).

But I shall not discuss all this now; in the next lecture I shall give some examples

of real conjectures and theorems which were obtained following the procedures of

symplectization and contactization.

In the present lecture I shall discuss another project, namely the informal com-

plexi�cation. It seems simpler because everyone knows what are real and complex

numbers. A complex vector space can be considered as a real vector space equipped

with an additional structure, i.e. with the operator of multiplication by i. However

the complexi�cation of a theory is not just a restriction onto the spaces and intro-

duction of a new operator. All the geometrical notions are changed. We should not

consider complex subspaces and operators only as some subspaces and operators in

the real space equipped with additional properties. Complex geometry is not just a

subtheory of real geometry but is rather an independent sister-theory which is par-

allel to the real case. I shall show some examples of the informal complexi�cation

and the way how to use it.

Of course the complexi�cation of the real line R is the complex line C . Let

us guess what is the complexi�cation of Morse theory. In Morse theory you have

nondegenerate functions. They must be considered smooth in the R-case and holo-

morphic in the C -case. Then you have critical points and critical values. If we

consider smaller values and larger values around some critical value then to go from

the �rst to the second one must add a handle. This is the main tool in the Morse

theory which describes the modi�cation of the regular level sets of a nondegenerate

function. We use here the possibility to compare real numbers. But we have no

natural inequalities for complex numbers. What shall be the complexi�cation?

It is clear that the complexi�cation of the function x

2

+y

2

is z

2

+w

2

. And also

the complexi�ed notions of critical points and values remain the same. It agrees

with the �rst example since the values lie inRand C correspondingly. The di�erence

is that the complement to the critical values is disconnected in the R-case and is

connected in the C -case. The preimages of di�erent regular values are topologically

the same in the complex case, you have no handles to be attached, you have no

perestroikas. So what is happening? In the R-case the zero-dimensional homotopy

(one may wish to consider homology but I will deal with homotopy) group of the

complement to the point is nontrivial:

�

0

(Rn f0g) = H

0

(Rn f0g) =Z

2

contrary to the complex case. But for C we have to consider instead of the homotopy

equivalence classes of mappings S

0

! Rn f0g the homotopy equivalence classes of

mappings S

1

! C n f0g. So the complexi�cation of �

0

is �

1

and we have:

�

1

(C n f0g) =Z:

Thus we obtain the �rst nontrivial fact that the complexi�cation of the ring Z

2

is

the ring Z.

Now we know what to do in the complex case with the critical values. We start

from a regular value, make a turn around a critical value and return to the initial

point. Thus we see that the perestroika complexi�es to the monodromy. And the

complexi�cation of Morse theory is the Picard-Lefschetz theory

4

. In the example

f(z; w) = z

2

+ w

2

the level variety is a cylinder and you have a vanishing cycle

4

According to the recent paper by V. Vassiliev \Strati�ed Picard-Lefschetz Theory with

Twisted Coe�cients" [Topics in Singularity Theory, A. Khovansky, A. Varchenko, V. Vassiliev

Ed., Advances in the Mathematical Sciences { 34 (AMS Translations 180), Providence RI (1997)
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on it (which vanishes at the critical moment) and when you go around the critical

value 0 you obtain the automorphism of the cylinder which maps the vanishing

cycle to itself but makes the twist of the whole cylinder. So this Dehn twist,

the Picard-Lefschetz transformation, is the complexi�cation of the handle addition

construction. From this simple example we see the complexi�cation is not that

trivial.

Let us continue. The complexi�cation of the real projective space RP

n

is the

complex one CP

n

and in particular the circle S

1

' RP

1

complexi�es into the

Riemann sphere S

2

' CP

1

. Now turn to homologies. We have Stiefel-Whitney

classes w

k

in cohomologies with coe�cients inZ

2

. And their complexi�cations are

Chern classes c

k

which belong to cohomologies with coe�cients in (Z

2

)

C

= Z. So

all the examples agree.

Now I will show an example where these ideas of complexi�cation work. Near

1970 Petrovsky asked me to help in evaluating a thesis of a mathematician Gudkov

from Nizhni Novgorod (it was Gorky at that time). He was studying the Hilbert

problem 16, the question on the plain algebraic curves of degree 6: what are the

possible shapes of the set f(x; y) = 0, if deg f = 6?

The classical answers for degree 2 were extended to degrees 3 and 4 by Newton

and Descartes. But then the di�culties start. Hilbert was unable to solve the case

of degree 6. And this problem was explicitly formulated in his list. One may also

consider the a�ne version but it is more complicated and instead we may consider

the projective one, dealing with the curves in RP

2

. Even to this, easier question,

no answer was known at Hilbert's time.

The only known thing was the celebrated theorem of Harnack who had proved

that the number of ovals (the zero-dimensional Betti number of the curve) was at

most the genus plus one: b

0

(�) � g + 1, the genus being represented by Riemann's

formula g =

(n� 1)(n� 2)

2

. For n = 6 one has max(b

0

) = 11. So the number

of components of a curve of degree 6 is not greater than 11. A curve with the

maximum possible number of ovals is called an M -curve. Hilbert formulated the

question about the con�guration of ovals for M -curves of degree 6.

The topologically possible con�gurations are counted by the rooted trees with

11 vertices. The number of such trees is enormous. However not all of them

correspond to existing M -curves. Indeed, consider an example from Fig. 4. It is

an impossible con�guration by B�ezout theorem: you have a line with 8 intersection

points while the degree of the curve is 6.

�




�

	

�

�

�

�

�

�

�

�

'

&

$

%

Fig. 4: Arrangement of ovals, impossible for a curve of degree 6.

So not all con�gurations are possible. Gudkov claimed to obtain the complete

possible con�gurations list of ovals of degree 6 curves but Petrovsky was doubtful

of his result. Let us describe it. The list contains three M -curves. Each of them

pp. 241{255], the complexi�cation of the Goresky-MacPherson strati�edMorse theory is the strat-

i�ed Picard-Lefschetz theory extending that of F. Pham as well as the theory of the Petrovsky

cycle crucial for the lacunae problems in hyperbolic PDEs.
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possesses exactly one non-void oval, some number of other ovals lie inside and some

lie outside. And for 3 items of the list the numbers of inside-outside are: (1; 9),

(5; 5) and (9; 1). And all other con�gurations are impossible. This is a wonderful

theorem with a very involved and complicated proof, di�cult to understand.

The thesis was the second version of the Gudkov's result. In the �rst one he

had examined the case (5; 5) and had been proving its nonexistence. And in the

second he constructed the case (5; 5) explicitly. He constructed also many curves of

higher degrees and the whole picture was not clear, but he made some interesting

observations about M -curves which he was able to construct.

'

&

$

%
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��
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��
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��

��

��
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��
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Fig. 5: Gudkov's (5; 5) case for the topology of an M -curve of degree 6.

Let us consider the case (5; 5), Fig. 5. If you put 4 ovals from inside to outside

(or otherwise) then you obtain the case (1; 9) (or (9; 1)) and the Euler characteristic

of the set where the function is positive is changed by 8; you can go also in the

opposite direction. So the Euler characteristic is well de�ned modulo 8. And this

relation � � k

2

( mod 8) was observable in all examples of M -curves of degree

2k which Gudkov was able to construct for higher degrees. But there were no

explanations for this behavior.

I was aware that congruences modulo 8 were standard in 4-dimensional topol-

ogy. So my idea was that there existed somewhere a four-dimensional manifold

which governed the topology of the real plane curve. But how to construct it? This

was the place where the complexi�cation came into the game and became very

helpful.

To obtain something four-dimensional from a two-dimensional object you ob-

viously need complexi�cation. But the set under consideration, i.e. the positivity

support of the function, is a manifold with boundary. Thus the problem was to

complexify a manifold with boundary. Of course if you have a hypersurface, e.g.

fx

2

+ y

2

= 1g, then to complexify it is very easy; in our example: fz

2

+ w

2

= 1g.

But if you have an inequality f(x) � 0 de�ning a manifold with boundary the

description of the complexi�cation is not so evident. I got it over in the following

way.

Let us �rst algebrize, i.e. write the inequality f(x) � 0 in algebraic terms.

This is f(x) = y

2

. Of course this equation is equivalent to the preceding inequality

but you have now no complex meaningless symbols. In the complex domain our

formula de�nes the double covering of the complex manifold which is rami�ed along

the boundary, i.e. along a complex hypersurface. Now we may complexify the

positivity domain of our function: f(z) = w

2

. This is the complex analog of the

manifold with boundary. It is the needed four-dimensional manifold.

Now to the complexi�ed manifold we apply all the machinery of four-dimensio-

nal topology, calculating intersection forms, characteristic classes and other topo-

logical invariants. After this we return to the real picture and interpret everything
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in terms of the ovals topology. This gives the Gudkov theorem and many other

results for higher degrees and dimensions.

Soon after my �rst steps many people continued all these ideas and the real

algebraic geometry �eld became a very ourishing domain. I should mention here,

to quote but a few, the important works by Rokhlin, Kharlamov, Viro, Nikulin,

Shustin. For instance, Rokhlin proved the Gudkov congruence modulo 8 (I had

proved it only modulo 4), Kharlamov found all the possible topological types of the

surfaces of degree 4 in RP

3

(which was one of the Hilbert's questions) and Nikulin

found the components of the space of such surfaces. It is still unknown of what

form are the curves of degree 8. The total number of cases verifying all the known

conditions is at most 90 and only for 9 of them existence question is unclear. So

there is still a challenge

5

even in degree 8.

Another example of complexi�cation is connected with the paper \Modes and

Quasimodes" on the quadratic forms strati�cation and its monodromy. Consider

as degenerated the quadratic forms in Euclidean space which have multiple eigen-

values. It seems this condition gives one equation �

1

= �

2

but it turns that it does

more. For symmetric matrices

�

a b

b c

�

of order 2 the equation �

1

= �

2

takes the

form (a� c)

2

+ 4b

2

= 0. Hence one equation �

1

= �

2

is equivalent to the set of two

equations a = c and b = 0. Similarly in any Euclidean space the codimension of

the subvariety of degenerated quadrics among all quadrics is 2, not 1.

Suppose for instance you have a sputnik and you wish to make two axes equal

in the adjusted ellipsoid of inertia, i.e. to make it an ellipsoid of revolution, which

is better for the stability. And suppose your instrument is a weight that can move

along one line. Then it is not su�cient, you really need two directions.

As the codimension of the variety of the degenerated ellipsoids is equal to 2 you

may go around this set of ellipsoids with equal axes. You go as if around a line in a

three-dimensional space. It is possible that during this turning a turnover occurs:

two axes change their directions. The length of an axis remains the same, if you

start from the largest axis of an ellipsoid then you return to the largest one but

it is possible that the direction becomes opposite. This happens generically. Thus

you have a at connection, a monodromy in the space of nondegenerate ellipsoids.

Now consider the complexi�cation. This means to consider Hermitian matrices

instead of symmetric. In the Hermitian case the codimension of the variety of

matrices having a multiple eigenvalue is 3, not 2. The fundamental group of the

complement is trivial. But now on the transversal space (of dimension 3) there

is a two-dimensional sphere linked with the multiple eigenvalues subvariety. And

the complexi�cation of the real theory of modes and quasimodes gives the theory

of Berry phase from quantum mechanics and the theory of integer quantum Hall

e�ect.

The complexi�cation is a promising thing and there is a lot of questions. For

example we considered the complexi�cation of the boundary notion. But this notion

is basic for the homology. What is the complexi�cation of the homology? This is

quite a nontrivial question followed by the questions about orientations, spin

C

-

structures and so on. Here is plenty of �eld to speculate, formulate conjectures,

construct theories but then there is the problem of proving them.

5

The Russian way to formulate a problem or a conjecture is to mention the simplest unknown

case, making further simpli�cation impossible. It is opposite to the French way of formulation

where the problem appears in such a general form that no one can make a generalization.
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And one must be careful because the complexi�cation is by no means unique.

There may be several complexi�cations of the same object. For example we have

seen that the complexi�cation of S

1

is S

2

. But let us consider S

1

as the group

SO(2). The complexi�cations of O(n) and SO(n) are obviously U (n) and SU (n).

So the complexi�cation of S

1

= SO(2) is S

3

= SU (2). Our manifold is complexi�ed

di�erently: in one case as a projective variety, in the other as a Lie group. So we

see that the complexi�cation depends on the structure.

I mention also the informal complexi�cation of the Coxeter reection groups A,

B, D which appeared in my recent paper on the Maxwell topological theorem on

spherical functions, which extends the classical theorem CP

2

=conj = S

4

to higher

dimensions. These complexi�cations are Lie groups which might suggest a strange

complexi�ed version of the Chevalley theorem.

The recent complexi�cation of the linking number by Frenkel and Khesin mea-

sures the \complex linking" of the topologically unlinked complex curves in complex

3-manifolds

6

. This complex linking is related to the string theory and hence to the

quantum �eld theory. The complexi�cation of the helicity invariant from hydrody-

namics is certainly related to the Chern-Simons functional. But this relation should

be formalized to become useful.

The next dream I want to present is an even more fantastic set of theorems

and conjectures. Here I also have no theory and actually the ideas form a kind

of religion rather than mathematics. The key observation is that in mathematics

one encounters many trinities. I shall present below a list of examples. The main

dream (or conjecture) is that all these trinities are united by some rectangular

\commutative diagrams". I mean the existence of some \functorial" constructions

connecting di�erent trinities. The knowledge of the existence of these diagrams

provides some new conjectures which might turn to be true theorems.

The �rst trinity that everyone knows is

(R; C ; H): (1)

The next trinity is

(E

6

; E

7

; E

8

): (2)

The parallelism of these two trinities seems to be a nontrivial theorem in Galois

theory for which I have no explanation, no proof and no formulation. Something

similar was formulated and proved by Kazhdan at the Gelfand jubilee a few years

ago but I have not seen its published version. I think in one of Kazhdan's papers

the proof as well as the formulation may be found. I shall show beyond a simpli�ed

version.

A well known trinity comes from the Platonic theory. It is the trinity

(hTetrahedroni; hOctahedroni; hIcosahedroni): (3)

The symmetry groups of these polyhedra are the Coxeter groups

(A

3

; B

3

; H

3

): (4)

6

See B. Khesin's article \Informal Complexi�cation and Poisson Structures on Moduli

Spaces" [Topics in Singularity Theory , A. Khovansky, A. Varchenko, V. Vassiliev Ed., Advances

in the Mathematical Sciences { 34 (AMS Translations 180), Providence RI (1997) pp. 147{155]

and his papers with I. Frenkel, A. Todorov, A. Rosly and V. Fock quoted in this article]



Symplectization, Complexi�cation and Mathematical Trinities 11

Few years ago I had discovered an operation transforming the last trinity into

another trinity of Coxeter groups:

(D

4

; F

4

; H

4

): (5)

I shall describe this rather unexpected operation later.

Let us continue. The �rst item of the next triple is the M�obius bundle, i.e. the

two-fold covering mapping sending the M�obius strip boundary to the central line.

The second is its complexi�cation and the third is the quaternionic analog.

(S

1

S

0

�! S

1

; S

3

S

1

�! S

2

; S

7

S

3

�! S

4

): (6)

The complexi�cation of the M�obius bundle is indeed the Hopf bundle. From the

construction it is clear that already in the M�obius case one should consider the

base as a projective space and the total space as a group. For the Hopf bundle it

is well known. This agrees with the previous assertion that (S

1

)

C

= S

2

when S

1

is

a projective line and (S

1

)

C

= S

3

when S

1

is considered with the group structure.

Next come the complex polynomials in one variable, the Laurent polynomials

and the modular polynomials, i.e. rational functions with 3 poles at 0, 1 and 1

(if one enlarge the number of poles then moduli appear but 3 points can always be

normalized):

(C [z]; C [z; z

�1

]; C [z; z

�1

; (z � 1)

�1

]): (7)

A recent paper of Turaev and Frenkel published in the \Arnold and Gelfand

seminars" contains the trinity

(hNumbersi; hTrigonometric Numbersi; hElliptic Numbersi): (8)

The �rst is the set of ordinary complex numbers. The second is a quantum version,

it consists of the deformations with one parameter. The numbers of the third type

are two-parameter deformations.

The theory of modes and quasimodes leads to the geometrical triples

(hQuadratic formsi; hHermitian formsi; hHyperHermitian formsi): (9)

and

(hFlat Connection Monodromyi; hVector Bundle Curvaturei; h ? i): (10)

The �rst two items in both trinities are well-known. A hyperHermitian form in

a quaternionic vector space is a real quadratic form invariant under the action of the

group S

3

= SU (2) of unitary quaternions. The third term in (10) is probably known

to the experts in hyperK�ahlerian geometry. The complexi�cation of the curvature

should be some 4-form, maybe called hypercurvature, and it should measure the

degree to which the Bianchi identity fails.

I think that the relation between the hydrodynamical helicity (the asymptotic

Hopf invariant) and the Chern-Simons functional mentioned above might be com-

pleted to form a trinity. But it is not clear whether the third item should be of

smaller or of higher dimension.

The next trinity is a well-known homological triple consisting ofWhitney, Chern

and Pontryagin classes

7

:

(w

i

; c

i

; p

i

): (11)

7

I was told by Gabrielov after the Toronto talk that in the polylogarithmic expressions for

the Chern and Pontryagin forms he had studied with Gelfand, Losik and McPherson one meets

the rational functions with 2 and 3 poles respectively. This con�rms the parallelism between the
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Givental proposed the trinity consisting of the homology, of the complexi�ca-

tion, i.e. K-theory, and of the elliptic homology:

(H

�

; K; h"``i): (12)

Now I shall explain some relations between di�erent trinities. The relations in

many cases are nontrivial and I shall show only the simplest ones. Consider �rst the

polyhedra (3) and count the numbers of edges. They are 6 for the tetrahedron, 12

for the octahedron and 30 for the icosahedron. Each of these numbers is a product

of two consecutive integers: 6 = 2 � 3, 12 = 3 � 4 and 30 = 5 � 6. Take the �rst factor

and subtract one. We obtain the relations with the very �rst trinity (1):

R

1

C

2

H

4

In most cases the numerology is more delicate but is as astonishing as in this

simple example. To �nd the relations one needs sometimes to work hard. For

instance consider the line (10) where we do not know exactly what to put on

the right. It must be some 4-form related to Pontryagin numbers or maybe some

quaternization of the real locally trivial bundles or a complexi�cation of the complex

ones. But it seems nontrivial to �nd all these relations.

Maybe there is some complexi�ed version of the quantum Hall e�ect, the three-

dimensional transversal being replaced by a �ve-dimensional one. It would have

been easy to predict the quantum Hall e�ect and the Berry phase theory simply by

complexifying the theory of monodromy of quadratic forms from the \Modes and

Quasimodes". This opportunity was lost. We may also miss more opportunities

not studying the quaternionic version of the modes and quasimodes theory.

The relations between the lines (3) and (4) are obvious: the last consists of the

symmetry groups of the �rst. But what is the relation with the line (5)? Consider

�rst the group A

3

. It is generated by reections in 3 mirrors. But the total number

of mirrors is higher. It is a good exercise for schoolchildren to �nd the whole

con�guration and the total number of mirrors for the tetrahedron symmetry group.

The answer is 6 since there exists exactly one mirror through each edge. But it

is not so easy to imagine the 3-dimensional space decomposition into parts given

by these 6 planes in R

3

. Even to count the number of parts is some exercise. The

answer is 24 and it is the order of the Weyl (or Coxeter) group, the parts being

called chambers.

It is better to represent these chambers in the projective plane rather than in

the 3-space since every mirror contains the origin of R

3

. So we have 6 lines in the

projective plane and now it is not di�cult to draw the picture (an arrangement in

the contemporary language). It is represented in Fig. 6, left.
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trinities (7) and (11). But the relation of the Whitney class to the ordinary polynomials, i.e. to

the one pole case, remains mysterious.
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Fig. 6: Springer cones for the A

3

group and their decomposition into Weyl

chambers.

Each pair of opposite chambers in R

3

is represented by a triangle (on the right

side of Fig. 6 the triangle corresponding to two Weyl chambers is hatched). The

walls of the chamber form just 3 lines of 6. The other 3 are added on the left side

of the picture. Together they decompose the projective plane into 12 triangles, so

the total number of pieces in R

3

is 2 � 12 = 24.

Let us describe this decomposition in more details. The chamber walls form

3 planes in the 3-dimensional space and decompose it into 8 parts. I call them

Springer cones (since Tony Springer has never considered them). For any Weyl

chamber you construct a collection of walls | planes, which decompose the n-

space into 2

n

Springer cones. Each Springer cone contains several Weyl chambers,

as in Fig. 6. On the projective plane the decomposition of the space into 8 parts

is represented as the decomposition into 4 parts, each representing two opposite

cones. Thus we get the decomposition of the projective plane into 4 (Springer)

triangles by continuations of the walls of one chamber. Now we count the numbers

of Weyl chambers in the di�erent parts and obtain the decomposition of the total

Weyl number:

24 = 2 (1 + 3 + 3 + 5):

If we do the same thing for the case of octahedron we obtain the following

decomposition of the corresponding Weyl number:

48 = 2 (1 + 5 + 7 + 11):

For the icosahedron case we get:

120 = 2 (1 + 11 + 19 + 29):

If you are experienced with Coxeter groups you know the quasihomogeneous

weights for D

4

. They are (2; 4; 4; 6). If you compare these numbers with the num-

bers from the decomposition of 24 above it will not be strange that the quasiho-

mogeneous weights for F

4

are (2; 6; 8; 12). Now if you even know nothing about H

4

you may guess the quasihomogeneous weights: (2; 12; 20; 30). And so we found one

relation between lines (4) and (5).

Note, that the weights of D

4

, F

4

and H

4

provide the numbers of vertices, faces

and edges of the tetrahedron, octahedron and icosahedron. And that the number

of the vertices of the octahedron equals the number of the edges of the tetrahedron,

while the number of the vertices of the icosahedron is equal to the number of the

edges of the octahedron. It is a mistery for me | the complexi�cation seems to

transform the edges into the vertices!

In other cases the parallelism might be even more strange. I add the triple of

the triangles which are sold in the stationery shops:

�

(60; 60; 60); (45; 45; 90) (30; 60;90)

�

: (13)

The theory described above suggests that the second is the informal complexi�ca-

tion of the �rst and the third is the quaternionic version, but this conjecture is as

mysterious as the statement that the octahedron is the complex and the icosahedron

is the quaternionic version of the tetrahedron.

I have heard from John MacKay that the 27 straight lines on a cubical surface,

the 28 tangents of a quartic plane curve and the 120 tritangent planes of a canonic

sextic curve of genus 4, form a trinity parallel to E

6

, E

7

and E

8

.
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One might even speculate, whether the sporadic simple groups are the quater-

nionic versions of the classical ones.

Question. What is the complexi�cation of the Kazarian cylinder? That is of

the functions on the cylinder.

Answer. The complexi�cation of the real trigonometric polynomials strati�-

cation theory is the theory of complex trigonometric polynomials strati�cation; it

may be found in \Functional Analysis" 1996. There also must be a quaternization.

The theory of Springer cones is the real version of the complex L2 (Lyashko-

Looijenga) mapping, sending the complex polynomial in one variable to the un-

ordered set of its critical values. The complex trigonometric version of the L2

mapping is the L3 (Lyashko-Looijenga-Laurent) mapping. One can try to consider

the real trigonometric polynomial theory as an a�ne Coxeter group

~

A version of

the Springer cones theory, in the spirit of Dubrovin's work on the a�ne Coxeter

groups associated to the Frobenius varieties of conformal string theory. Trying to

�nd this extension of the Springer cones theory I have constructed a polyhedral

model of the real trigonometric M -polynomials strati�ed variety. But the relation

of these polyhedra to the Dubrovin a�ne Coxeter group remains conjectural (per-

haps to get the trigonometric case of the Springer cones theory one should apply

Dubrovin's construction to the real forms, di�erent from the considered real form,

which correspond to the same complex object as it was in Dubrovin's study).

The real version of the complex theory of the L3 mapping is related to the

Kazarian theorem. One might also consider another complexi�cation of the cylinder

S

1

�Ras was suggested to me by A. Tyurin. It is S

3

�R. Indeed, the neighborhood

of S

1

in C is S

1

�Rwhile that of S

3

= (S

1

)

C

in H = (C )

C

is S

3

�R. There also

should exist some modular version of L3 mapping theory with 3 singular points.

But it has to be constructed yet.

Question. Is the case of 3 singular points related to quaternions?

Answer. Certainly it should be related to quaternions but I do not know what

the relation is.

Question. Did Gudkov get the recommendation for his thesis?

Answer. The thesis was of course defended even though I was never able to

read it. But as a result I invented all the matter I have explained to you. I was

working hard for a month and after this I proved his conjecture modulo 4. The

most di�cult thing was some lemma which I was able to guess but was unable to

prove. I always had very good undergraduate students and at that time I asked

Varchenko to help me. He returned in a few days saying that the lemma might be

proved by some ingenious arguments that he explained to me. This allowed me to

continue my work. But when I came to the end I found out that the arguments

were not proving the lemma and it was a catastrophe because everything depended

on this lemma. I had to work hard once more to prove the lemma and I �nally

succeeded. But without Varchenko's statement on the correctness of that lemma

I would have never performed the rest of the work, being stopped by the lemma.

Unfortunately Varchenko had declined to sign the �nal paper as a coauthor.

D.A. Gudkov became the leader of a strong team in real algebraic geometry at

Nizhni Novgorod (Utkin, Polotovskii, Shustin, : : : ). Some of the results of Gudkov

and his students were recently rediscovered by C.T.C. Wall. Not long ago the

American Mathematical Society has published a volume, dedicated to Gudkov's
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memory. You can �nd there the biography of this extraordinary person and the

description of his plenty contributions to real algebraic geometry.


