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preface




Up until recently, Riemannian geometry and basic topology were not
included, even by departments or faculties of mathematics, as compulsory
subjects in a university-level mathematical education. The standard courses
in the classical differential geometry of curves and surfaces which were given
instead (and still are given in some places) have come gradually to be viewed

as anachronisms. However, there has been hitherto no unanimous agreement
as to exactly how such courses should be brought up to date, that is to say,
which parts of modern geometry should be regarded as absolutely essential to
a modern mathematical education, and what might be the appropriate level
of abstractness of their exposition.

The task of designing a modernized course in geometry was begun in 1971
in the mechanics division of the Faculty of Mechanics and Mathematics of
Moscow State University. The subject-matter and level of abstractness of its
exposition were dictated by the view that, in addition to the geometry of
curves and surfaces, the following topics are certainly useful in the various
areas of application of mathematics (especially in elasticity and relsftivity,‘ to
name but two), and are therefore essential: the theory of tensors (including
covariant differentiation of them); Riemannian curvature, geodesics ‘_md ?be
calculus of variations (including the conservation laws and _Hamlitoma“n
formalism); the particular case of skew-symmetric_tensors (ie. “forms”)
together with the operations on them; and the various formulae akin t0
Stokes’ (including the all-embracing and invariant “general Stokes formula
in  dimensions). Many leading theoretical phy
cians’ view that it would also be s
transf i and Lie T M
"ngl-?‘:’: also set!m the course should be given bl‘: ‘;:
simpumm.hm.'ggpodbh,mdthnwhuw«pmuﬂ




Preface

terminology should be that used by physicists I'hus it was :.ﬂnng these lines
that the archetypal course was taught. It was given um‘n: permanent [.,"], as
duplicated lecture notes puhlhhcd under the auspices of Moscow State
University as

Differential Geometry, >arts 1 and 11, by S, P. Novikov, Division of
M:c.hunir.-a, Moscow State University, 1972

Subsequently various parts uf.|hc course were altered, “"dlﬂcw topics
added. This supplementary material was published (also in duplicated form)
as:

Differential Geometry, Part 111, by 5. P. Novikov and A. T !“umcnkg;l
Division of Mechanics, Moscow State University, 1974,

The present book is the outcome of a reworking, re-ordering, and extensive
elaboration of the above-mentioned lecture notes. It is the authors’ view that
it will serve as a basic text from which the essentials for a course in modern
geometry may be easily extracted.

To S. P. Novikov are due the original conception and the overall plan of
the book. The work of organizing the material contained in the duplicaied
lecture notes in accordance with this plan was carried out by B. A. Dubrovin.
This accounts for more than half of Part I; the remainder of the book is
essentially new. The efforts of the editor, D. B. Fuks, in bringing the book to
completion, were invaluable.

The content of this book significantly exceeds the material that might be
considered as essential to the mathematical education of second- and third-
year university students. This was intentional: it was part of our plan that
even in Part I there should be included several sections serving to acquaint

(through further independent study) both undergraduate and graduate
students with the more complex but essentially geometric concepts and
methods of the theory of transformation groups and their Lie algebras, field
theory, and the calculus of variations, and with, in particular, the basic
ingredients of the mathematical formalism of physics. At the same time we
strove to minimize the degree of abstraction of the exposition and terminol-
ogy, often sacrificing thereby some of the so-called “generality” of statements
and proofs: frequently an important result may be obtained in the context of
crucial examples containing the whole essence of the matter, using only
elementary classical analysis and geometry and without invoking any
modern “hyperinvariant” concepts and notations, while the result's most
genml'h'nnuiatic{n and especially the concomitant proof will necessitate a
flrnmauc increase in the complexity and abstractness of the exposition. Thus
in such cases we !lave first expounded the result in question in the setting of
ll.'lf relevant significant examples, in the simplest possible language appro-
priate, and have postponed the proof of the general form of the result, or
;l:;l;d b'(t) :lnl‘;)s:lher‘. For our trcatmc_m of those geometrical questions more
p with modern physics, we analysed the physics literature:
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Preface vié

pooks on quantum field theory (see eg [35). (37D devote considersble
portions of their beginning sections 1o describing, in physicists’ terms, useful
facts about the most important Concepts associated with the ‘h:lhcr-
dimensional calculus of variations and the simplest representations of Lie
groups; the books [41], [43] are devoted 1o field theory in its geometric
aspects; thus, for instance, the book [41] contains an extensive treatment of
Riemannian geomelry from the physical point of view, including much useful
concrete material. It is interesting to look at books on the mechanics of
continuous media and the theory of rigid bodies ([42], [44], (45]) for further
examples of applications of tensors, group theory, etc.
In writing this book it was not our aim to produce a “self-contained” text:
in a standard mathematical education, Eeometry is just one component of the
curriculum; the questions of concern in analysis, differential equations,
algebra, clementary general topology and measure theory, are examined in
other courses. We have refrained from detailed discussion of questions drawn
from other disciplines, restricting ourselves to their formulation only, since
they receive sufficient attention in the standard programme.
In the treatment of its subject-matter, namely the geometry and topology
of manifolds, Part II goes much further beyond the material appropriate to
the aforementioned basic geometry course, than does Part 1. Many books
have been written on the topology and geometry of manifolds: however, most
of them are concerned with narrowly defined portions of that subject, are
written in a language (as a rule very abstract) specially contrived for the
particular circumscribed area of interest, and include all rigorous founda-
tional detail often resulting only in unnecessary complexity. In Part I1 also we
have been faithful, as far as possible, to our guiding principle of minimal
abstractness of exposition, giving preference as before to the significant
examples over the general theorems, and we have also kept the inter-
dependence of the chapters to a minimum, so that they can each be read in
isolation insofar as the nature of the subject-matter allows. One must
however bear in mind the fact that although several topological concepts (for
instance, knots and links, the fundamental group, homotopy groups, fibre
spaces) can be defined easily enough, on the other hand any attempt to make
nontrivial use of them in even the simplest examples inevitably requires the
development of certain tools having no forbears in classical mathematics.
Conseguently the reader not hitherto acquainted with elementary topology
will find (especially if he is past his first youth) that the level of diﬂicu!t)_r of
Part I is essentially higher than that of Part I; and l'orlhisthemhnopout!h
remedy. Starting in the 1950s, the development of this apparatus and its
incorporation into various branches of mathematics has proceeded with
great rapidity. In recent years there has appeared a rash, as it were, of
nontrivial applications of topological methods (sometimes in comlnamn
with complex algebraic geometry) to various problems of modern theoretical
Physics: to the quantum theory of specific fields of a geometrical nature (for
example, Yang-Mills and chiral fields), the theory of fluid crystals and




vii Preface

superfluidity, the general theory of relativity, to certain physically importang
nonlinear wave equations (for instance, the Korteweg-de Vries and sine-
Gordon equations); and there have been attempts to apply the theory of
knots and links in the statistical mechanics of certain substances possessi

“long molecules™. Unfortunately we were unable to include these applications

in the framework of the present book, since in each case an adequate

treatment would have required a lengthy preliminary excursion into physics,
and so would have taken us too far aficld. However, in our choice of materia]
we have taken into account which topological concepts and methods are
exploited in these applications, being aware of the need for a topology text
which might be read (given strong enough motivation) by a young theoretical
physicist of the modern school, perhaps with a particular object in view.
The development of topological and geometric ideas over the last 20 years
has brought in its train an essential increase in the complexity of the algebraic
apparatus used in combination with higher-dimensional geometrical in-
tuition, as also in the utilization, at a profound level, of functional analysis,
the theory of partial differential equations, and complex analysis; not all of
this has gone into the present book, which pretends to being elementary (and
in fact most of it is not yet contained in any single textbook, and has therefore
to be gleaned from monographs and the professional journals).
Three-dimensional geometry in the large, in particular the theory of convex
figures and its applications, is an intuitive and generally useful branch of the
classical geometry of surfaces in 3-space; much interest attaches in particular
to the global problems of the theory of surfaces of negative curvature. Not
being specialists in this field we were unable to extract its essence in
sufficiently simple and illustrative form for inclusion in an elementary text.
The reader may acquaint himself with this branch of geometry from the
books [1], [4] and [16].

Of all the books on the topology and geometry of manifolds, the classical
works A Texthook of Topology and The Calculus of Variations in the Large, of
Siefert and Threlfall, and also the excellent more modern books [107, [11]
and [12], turned out to be closest to our conception in approach and choice
of topics. In the process of creating the present text we actively mulled over
and exploited the material covered in these books, and their methodology. In
fact our overall aim in writing Part Il was to produce something like a
modern analogue of Seifert and Threlfall's Textbook of Topology, which
would however be much wider-ranging, remodelled as far as possible using
modern techniques of the theory of smooth manifolds (though with simplicity
of language prescrved), and enriched with new material as dictated by the
contemporary view of the significance of topological methods, and of the
kind of reader who, encountering topology for the first time, desires to learn a
reasonable amount in the shortest possible time. It seemed to us sensible to
try to benefit (more particularly in Part I, and as far as this is possible in a
book on mathematics) from the accumulated methodological experience of

the physicists, that is, to strive to make pieces of nontrivial mathematics more
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Preface i
::E;U;:Im comprehensible lh_rnugh the use of the most clc_mcnlary and generally
theor- 1 familiar means available for their exposition (preserving, however, the format
)’_ of characteristic of the mathematical literature, wherein the statements of the
pO_SSCSSmB main conclusions are separated out from the body of the text by designating
Plication, them “theorems”, “lemmas”, etc). We hold the opinion that, in general,
adeﬁ!“ale understanding should precede formalization and rigorization. There are
© physics, many facts the details of whose proofs have (aside from their validity)
! materiy) absolutely no role to play in their utilization in applications. On occasion,
thods are where it seemed justified (more often in the more difficult sections of Part 1T)
logy text we have omitted the proofs of needed facts. In any case, once thoroughly
1€oretica| familiar with their applications, the reader may (if he so wishes), with the help
L view, of other sources, easily sort out the proofs of such facts for himself. (For this
20 years purpose we recommend the book [21].) We have, moreover, attempted to
algebraic break down many of thr:_sc omitted proofs into soluble pieces which we have
rical in- placed among the exercises at the end of the relevant sections. :
analysis, In the final two chapters of Part 11 we have brought loglel_her several items
ot all of from the recent literature on dynamical sysl:ms and fo!lalrons. the geperal
ary (and theory of relativity, and the lheqry of Yang-Mills and chiral fields. The ideas
heref. expounded there are due to various contemporary researchers; ho_wcvcr ina
s book of a purely textbook character it may be accounted permissible not to
give a long list of references. The reader who graduates to a deeper study of
.':2?;:: these questions using the research journals will find the relevant references
: here.
o g : Homology theory forms the central theme of Part I11.
s N?t In conclusion we should like to express our deep gratitude to our
R s colleagues in the Faculty of Mechanics and Mathematics of M.S.U., whose
g valuable support made possible the design and operation of the new 2
ik geometry courses; among the leading mathematicians in the faculty this b
2 applies most of all to the creator of the Soviet school_vof topology, P. S. i
- Aleksandrov, and to the eminent geometers P. K. RaSevskii and N. V !-.".ﬁmov. H
arge, of We thank the editor D. B. Fuks for his great efforts in giving the ‘
1 [I.l] manuscript its final shape, and A. D. Aleksandrov, A. V. Pogorelov,vju._ F. « _
e Borisov, V. A. Toponogov and V. I. Kuz'minov, who in the course of Teviewing
d over the book contributed many useful comments. We also thank Ja. B. Zel'dovit
ogy. In for several observations leading to improvements in the exposition at several :
like a points, in connexion with the preparation of the English and French editions -
" of this book. ;
| usip e i We give our special thanks also to the scholars who facilitated the task 03 :
plicity incorporating the less standard material into the book. For instance the pr t
y the of Liouville's theorem on conformal transformations, which is not to be
of the found in the standard literature, was communicated to us by V. A. Z.oné.l'g;el i
arn a i editor D, B. Fuks simplified the proofs of several gheomns. “fe are gra > i
hle to also to O. T. Bogojavlenskii, M. I. Monastyrskii, S. G Gindikin, D. V.
e Alekseevskii, 1. V. Gribkov, P. G. Grinevié, and E. B. Vinberg.
ce i
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CHAPTER |
Examples of Manifolds

§1. The Concept of a Manifold
1.1. Definition of a Manifold

The concept of a manifold is in essence a generalization of the idea, first
formulated in mathematical terms by Gauss, underlying the usual procedure
used in cartography (i.e. the drawing of maps of the earth’s surface, or
portions of it).

The reader is no doubt familiar with the normal cartographical process:
The region of the earth’s surface of interest is subdivided into (possibly
overlapping) subregions, and the group of people whose task it is to draw the
map of the region is subdivided into as many smaller groups in such a way
that:

(i) each subgroup of cartographers has assigned to it a particular subregion
(both labelled i, say), and

(ii) if the subregions assigned to two different groups (labelled i and j say)
intersect, then these groups must indicate accurately on their maps the
rule for translating from one map to the other in the common region (i.e.
region of intersection). (In practice this is usually achieved by giving
beforehand specific names (o sufficiently many particular points (ie.
Jand-marks) of the original region, so that it is immediately clear which
points on different maps represent the same point of the actual region.)

Fach of these separate maps of subregions is of course drawn on a flat
sheet of paper with some sort of co-ordinate system on it (e.g. on “squared”
paper). The totality of these flat “maps” forms what is called an “atlas” of the
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region of the earth’s surface in question. (It is usually further indicated on
each map how to calculate the actual length of any path in the subregion
represented by that map, i.e the “scale™ of the map is given. However the
basic concept of a manifold does not include the idea of length; ie. as jy jg
usually defined, a manifold does not ab initio come endowed with a metric; we
shall return to this question subsequently.)

The above-described cartographical procedure serves as motivation for
the following (rather lengthy) general definition.

1.1.1. Definition. A differentiable n-dimensional manifold is an arbitrary set M
(whose elements we call “points”) together with the following structure on it.
The set M is the union of a finite or countably infinite collection of subsets v
with the following properties.

(i) Each subset U, has defined on it co-ordinates xg, a=1,..., n (called
local co-ordinates) by virtue of which U, is identifiable with a region of
Euclidean n-space with Euclidean co-ordinates x3. (The U, with their co-
ordinate systems are called charts (rather than “maps”) or local co-ordinate
neighbourhoods.)

(i) Each non-empty intersection U, U, of a pair of such subsets of M
thus has defined on it (at least) two co-ordinate systems, namely the
restrictions of (x?) and (xj); it is required that under each of these co-
ordinatizations the intersection U,n U, is identifiable with a region of
Euclidean n-space, and further that each of these two co-ordinate systems be
expressible in terms of the other in a one-to-one differentiable manner. (Thus
if the transition or translation functions from the co-ordinates xj to the co-
ordinates x} and back, are given by

=
X3 = x3lxh, .

x5, a=1,...,m
7 o) ! a=1...,n

then in particular the Jacobian det(dx%/dxf) is non-zero on the region of
intersection.) The general smoothness class of the transition functions for all
intersecting pairs U, U,, is called the smoothness class of the manifold M
(with its accompanying “atlas” of charts U ).

(1)

Any Euclidean space or regions thereof provide the simplest examples of
manifolds. A region of the complex space C" can be regarded as a region of
the Euclidean space of dimension 2n, and from this point of view is therefore
also a manifold.

Given two manifolds M =), U, and N=|J, U,, we construct their

direct product M x N as follows: The points of the manifold M x N are the f

:mdcredb,pms (m, n), and the covering by local co-ordinate neighbourhoods is

MxN-HU,xV,,
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where if 1 are the co-ordimates on the region U, and 3 the co-ordinates on
¥, then the co-ordinates on the region U, x ¥, are (2. %)

These are just a few (ways of obtaining) examples of manifolds; in the
sequel we shall meet with many further examples.

It should be noted that the scope of the above general definition of a
manifold s from 2 purely logical point of view unnecessarily wide; it needs 10
be restricted. and we shall indeed impose further conditions (see below)
These conditions are most naturally couched in the language of general
topology, with which we have not yet formally acquainted the reader. This
could have been avoided by defining a manifold at the outset to be instead a
smooth non-singular surface (of dimension ) situated in Euclidean space of
some (perhaps large) dimension. However this approach reverses the logical
order of things; it is better to begin with the abstract definition of manifold,
and then show that (under certain conditions) every manifold can be realized
as a surface in some Euclidean space.

We recall for the reader some of the basic concepts of general topology.

(1) A ropological space is by definition a set X (of “points™) of which
certain subsets, called the open sets of the topological space, are distinguished;
these open sets are required to satisfy the following three conditions: first, the
mtersection of any two (and hence of any finite collection) of them should
again be an open set; second, the union of any collection of open sets must
again be open; and thirdly, in particular the empty set and the whole set X
must be open.

The complement of any open set is called a closed set of the topological
space.

The reader doubtless knows from courses in mathematical analysis that,
exceedingly general though it is, the concept of a topological space already
suffices for continuous functions to be defined: A map f: X — Y ol one
topological space to another is continuous if the complete inverse image
f'U) of every open set U < Y is open in X. Two topological spaces are

pologically equivalent or homeomorphic if there is a one-to-one and onto
map between them such that both it and its inverse are continuous.

In Euclidean space R, the “Euclidean topology” is the usual one, where
the open sets are just the usual open regions (see Part I, §1.2). Given any
subset A c R", the induced topology on A is that with open sets the
intersections A n U, where U ranges over all open sets of R". (This definition
extends quite generally to any subset of any topological space.)

1.1.2. Definition. The topology (or Euclidean topology) on a manifold M is
given by the following specification of the open sets. In every local co-
ordinate neighbourhood U, the open (Euclidean) regions (determined by the
given identification of U, with a region of a Euclidean space) are to be_open in
the topology on M; the totality of open sets of M is then obtained by
admitting as open also arbitrary unions of countable collections of such
regions, i.e. by closing under countable unions.

¥
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With this topology the continuous maps (in particular real-valued func.

tions) of a manifold M turn out to be those which are continuous in the ugyz| mnPP‘“P_n':
sense on each local co-ordinate neighbourhood U,. Note also that any opey, topology !
subset V of a manifold M inherits, i.e. has induced on it, the structure of 5 The o
manifold, namely ¥ = ( |, V,, where the regions V, are given by & (o fact, BOW
- rselves cO
LA Ve “ ?;1 discover
(2) “Metric spaces” form an important subclass of the class of a) of one entit]
topological spaces. A metric space is a set which comes equipped with 3 problem to
“distance function”, i.c. a real-valued function p(x, y) defined on pairs x, y of different <O
its elements (“points™), and having the following properties: region 0{ i
another jus
(i) plx. y)=ply, x) that not alf
() plx,x)=0, p(x,y)>01f x £y, without sit
(i) plx, y)< plx, 2) + plz, y) (the “triangle inequality”). An imp
manifolds’

For example n-dimensional Euclidean space is a metric space under the
usual Euclidean distance between two points x = (x', ..., x"), y=(y',..., ¥k

1.1.3. Def
g U, U, c
plx, y) = /'};I (== J g = det(
A metric space is topologized by taking as its open sets the unions of For ex
arbitrary collections of “open balls”, where by open ball with centre x,; and definition
radius £ we mean the set of all points x of the metric space satisfying p(x,, x) WE BSHE
<. (For n-dimensional Euclidean space this topology coincides with the we obtai
above-defined Euclidean topology.) ordinate
An example important for us is that of a manifold endowed with a singular,
Riemannian metric. (For the definition of the distance between two points of sign.
a manifold with a Riemannian metric on it, see §1.2 below.)
(3) A topological space is called Hausdorff if any two of its points are 114.D
contained in disjoint open sets, OF -
In particular any metric space X is HausdorfT; for if x, y are any two
distinct points of X then, in view of the triangle inequality, the open balls of Thus
radius §p(x, y) with centres at x, y, do not intersect, we shal
We shall henceforth assume implicitly that all topological spaces we consider enacaly

are Hausdorff. Thus in particular we now supplement our definition of a
manifold by the further requirement that it be a Hausdorff space.

(4) A topological space X is said to be compact if every countable
collection of open sets covering X (ie. whose union is X) contains a finite
subcollection already covering X. If X is a metric space then compactness is
equivalent to the condition that from every sequence of points of X &
W?;'Jll‘:lﬂi wibuquenco can be selected. :

topological space is (path-)eonnected if any two of its points can be
Joined by a continuous path (ie. map from [0, 1] ro the |p|c=§° i

(6) A further kind of topological space important for us is the “space d
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mappings™ M — N from a given manifold M 1o a given manifold N. The
topology in question will be defined later on

The concept of a manifold might at first glance seem excessively abstract
In fact, however, even in Euclidean spaces, or regions thereof, we often find
ourselves compelled to introduce a change of co-ordinates, and consequently
to dlﬁCtW'-‘_f and apply the transformation rule for the numerical components
of one entity or another. Moreover it is often convenient in solving a (single)
problem to carry out the solution in different regions of a space using
dnﬁ;rcnt co-ordinate systems, and then to see how the solutions match on the
region of intersection, where there exist different co-ordinate systems. Yet
another justification for the definition of a manifold is provided by the fact
that not all surfaces can be co-ordinatized by a single system of co-ordinates
withou_t singular points (e.g. the sphere has no such co-ordinate system).

An important subclass of the class of manifolds is that of “orientable
manifolds™.

L.1.3. Definition. A manifold M is said to be oriented if for every pair
U,. U, of intersecting local co-ordinate neighbourhoods, the Jacobian
J g = det(dx3/éx?) of the transition function is positive.

For example Euclidean n-space R" with co-ordinates x', ..., x" is by this
definition oriented (there being only one local co-ordinate neighbourhood). If
we assign different co-ordinates y', ..., 3" to the points of the same space R",
we obtain another manifold structure on the same underlying set. If the co-
ordinate transformation x* = x*(y',..., "), a=1,..., n, is smooth and non-
singular, then its Jacobian J = det(3x*/dy®), being never zero, will have fixed

sign.

1.1.4. Definition. We say that the co-ordinate systems x and y define the same
orientation of R if J > 0, and opposite orientations if J <0.

Thus Euclidean n-space possesses two possible orientations. In the sequel
we shall show that more generally any connected orientable manifold has

exactly two orientations.
1.2. Mappings of Manifolds; Tensors on Manifolds

Let M = [ J, U,, with co-ordinates xj, and N = | ), ¥, with co-ordinates y{,
be two manifolds of dimensions n and m respectively.

1.2.1. Definition. A mapping f: M — N is said o be smooth of smoothness
class k, if for all p,q for which f determines functions yj(xj.....x})
=f(x},..., x})f, these functions are, where defined, smooth of smoothness
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Jass & (ie all their partial derivatives up to those of kth order exist gq "

5 |

continuous). (It follows that the smoothness class of J cannot ex P 4
maximum class of the manifolds.) ced

Note that in particular we may have N = R, the real line, whence m L
and / is a real-valued function of the points of M. The situation may arise
where a smooth mapping (in particular a real-valued function) is not defi
on the whole manifold M, but only on a portion of it. l_-'or instance each
co-ordinate x} (for fixed a, p) is such a real-value function of the points of M,
since it is defined only on the region U,

1.2.2. Definition. Two manifolds M and N are said to be smoothly equivalen
or diffeomorphic if there is a one-to-one, onto map f such that both f: M — i
and [~ ':N— M, are smooth of some class k> 1. (It follows that the
Jacobian J,, = det(dy;/dx}) is non-zero wherever it is defined, i.. wherever
the functions y§ =f(x}, ..., x}) are defined.)

We shall henceforth tacitly assume that the smoothness class of any
manifolds, and mappings between them, which we happen to be considering,
are sufficiently high for the particular aim we have in view. (The class will
always be assumed at least 1; if second derivatives are needed, then assume
class > 2, etc)

Suppose we are given a curve segment x = x(1), a< 1< b, on a manifold
M, where x denotes a point of M (namely that point corresponding to the
value 1 of the parameter). That portion of the curve in a particular co-
ordinate neighbourhood U, with co-ordinates x2 is described by the
parametric equations

xp = xy(t),
and in U, its velocity (or tangent) vector is given by
X=(xl,..., %),

In regions U, n U, where two co-ordinate systems apply we have the two
representations xj(r) and xA(1) of the curve, where of course

x3xi(r), ..., X)) = x5

Hence the relationship between the components of the velocity vector in the
two systems is expressed by

a=l....,n,

& axg

l" = -‘KE x:. (3)
As for Euclidean space, so also for general manifolds this formula provides
the basis for the definition of “tangent vector”,

:.I.J. Dﬂ-. A tangent vector to an n-manifold M at an arbitrary point x
Tepresented in terms of |ocal Co-ordinates x; by an n-tuple (&) of

Y —_—
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The set of all tangent vectors 1o an n-dimenssonal manidold M at a pomnt x
forms an n-dimensional bnear space 7, = T, M, the tangent space 10 M a1 the
point x. We see [rom (3) that the velocity vector at x of any smooth curve on
M through x 1 a Langent vecior 1o M at x. From (4) it can be seen that for any
choice of local co-ordinates x* in a neighbourhood of x, the operators &/6x*
(operating on real-valued functions on M) may be thought of as forming a
basis ¢, = J/2x* for the Langent space T,

A smooth map [ from a manifold M 10 2 manifold N gives rise for each x,
1o an induced linear map of tangent spaces

S T Ty
defined as sending the velocity vector at x of any smooth curve x = xt)
(through x) on M, to the velocity vector at f(x) to the curve f(x(r)) on the
manifold N. In terms of local co-ordinates x* in a neighbourhood of x& M,
and local co-ordinates y* in a neighbourhood of f(x) € N, the map f may be
wrilien as
Pt 5 el oM

It then follows from the above definition of the induced linear map f, that its
matrix is the Jacobian matrix (9y?/dx*), evaluated at x, ie. that it is given by

" _ej'
14 -"f—g;:'f" (5)

For a real-valued function f: M — F, the induced map f, corresponding to
each x € M is a real-valued linear function (ie. linear functional) on the
tangent space to M at x; from (5) (with m = 1) we see that it is represented by
the gradient of f at x and is thus a covector. Interpreting the differential of a
function at a point in the usual way as a linear map of the tangent space, we
see that f, al x is just df.

1.24, Definition. A Riemannian metric on a manifold M is a point-dependent, :
positive-definite quadratic form on the tangent veclors at cach point,
depending smoothly on the local co-ordinates of the points. Thus at cach b
poinu-u;,_,..x;)ofuchre;ionv,wim loulco-ord.lmtu.vf;,thcmmnc B
is given by a symmetric matrix (8%(xh, ..., 3)), and determines a (sym- &
metric) scalar product of pairs of tangent vectors at the point x:

&y = g = < &
1617 = L& &
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where as usual summation is understood over indices recurring ."‘M
and subscript. Since this scalar product is to be cn-mdmal&mdemi{_f

£5 e = K8 1
it follows from the transformation rule for vectors that 'hccocmcbnum‘
the quadratic form transform {under a change to co-ordinates x}) acce ding 1

" 'T‘trmd’w

A Riemanniad ¥
meiric space struck

to the rule ] where the infimun
s Axt 1 p and Q. Weleave

B8 = B ®) this metric-Space

4 v 1t follows fros

§ i ! ; 5 : manifold (with 2

The definition of a pseudo- Riemannian metric on a manifold M is obtained another can be ]
from the above by replacing the condition that the quadratic form be at each general not be p
point positive definite, by the weaker requirement that it be non-degenerate, be joined by 2 t

(It then follows from the smoothness assumption that, provided M js
connected, the index of inertia of the quadratic form is constant (cf. §3.2 of

Part I).)
1.2.5. Definition. A tensor of type (k, [) on a manifold is given in each local co- 1.3. Embedc
ordinate system x% by a family of functions Manifo
OT 5 13.1. Defimiti
of the points x. In other local co-ordinates x4 (embracing the point x) the manifold N o
components “/T}! - (x) of the (same) tensor are related to its components in such that thei
the system x by the transformation rule (P,“a':“" ’;‘}"
the maj
axh ax axh axh i
T R o B WL the manifold
T E;f E;if axy Xl T L may occur.)
An imme:
All of the definitions and results of Chapter 3 of Part I pertaining to tensors Abusing lan,
defined on regions of Cartesian n-space, now apply without change to tensors
on manifolds.
A metric g,, on a manifold provides an example of a tensor of type (0,2) We shall
(compare (6) and (7). On an oriented manifold such a metric gives rise to a each local &
volume element system of e

L=/ 1816, . .c,,  g=det(g,),

where ¢,, ,, 18 the skew-symmetric tensor of rank n such that g,, ,=1(sec
gmnhn I). It follows (as in §18.2 of Part I) that the volume element isa
tensor with respect to co-ordinate changes with positive Jacobian, and so is
_ﬂd_u-or on our manifold-with-orientation. As in Part I, so also in the
present m mﬂ o:;udn:::lds, it is convenient to write the volume
element ion ifferential forms (i co-ordinates

defining the same orientation) Ao

Q= /lgldx* A A der,




§1. The Concept of a Manifold

A Riemannian metric di’ on a (connected) manifold M gives rise to a
metric space structure on M with distance function p(P, Q) defined by

plP, Q) fl'llnj dl,
L3 ]

where the infimum is taken over all piecewise smooth arcs joining the points
P and Q. We leave it to the reader to verify that the topology on M defined by
this metric-space structure coincides with the Euclidean topology on M.

It follows from the results of §29.2 of Part I, that any two points of a
manifold (with a Riemannian metric defined on it) sufficiently close to one
another can be joined by a geodesic arc. For points far apart this may in
general not be possible, though if the manifold is connected such points can
be joined by a broken geodesic.

1.3. Embeddings and Immersions of Manifolds.
Manifolds with Boundary

1.3.1. Definition. A manifold M of dimension m is said to be immersed in a
manifold N of dimension n > m, if there is given a smooth map f: M — N
such that the induced map f,, is at each point a one-to-one map of the tangent
plane (or in other words if in terms of local co-ordinates the Jacobian matrix
of the map f at each point has rank m). The map [ is called an immersion of
the manifold M into the manifold N. (In its image in N, self-intersections of M
may occur.)

An immersion of M into N is called an embedding if it is one-to-one.
Abusing language slightly, we shall then call M a submanifold of N.

We shall always assume that any submanifold M we consider is defined in
each local co-ordinate neighbourhood U, of the containing manifold N by a

systemn of equations

f},(x:,,...,f,')=0, a;
...................... where rank e
axt

at on each intersection U, n U, the systems (/3 = 0) and
me set of zeros. It follows that throughout each
N we can introduce new local co-ordinates y3..... ¥}

with the property th:
(f;=0) have the sa
neighbourhood U, of
satisfying

Yot b oo X Y =S )
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112 Definition. A closed region A of a manifold M, defined by an inequalyy following form

< 0for f(x) = 0) where [ is a smooth real-valued function g

‘\‘:th,c::ﬁ:j ’-..t :v:a:l::if;;—:‘:fﬁ-hnulidﬂr}’. (It is assumed here lhat_lhc bounda,
: 4.. I;gl\f" by the equation f(x)=0, is a non-singular submanifold of M, i PR
that the gra'dicm of the function f does not vanish on that bour_ldary_| gy

Let A and B be manifolds with boundary, both given, as in the pre-
ceding definition, as closed regions of manifolds M am;l N rl:spectlvgly: A map
@: A — B is said to be a smooth map of manifolds-with-boundary if it is the i
restriction to A of a smooth map

il R o RS i where agair
of an open region U of M, containing A. (If 4 is defined in M by the inequality intersection
f(x) <0, then U is usually taken to be U, = {x|f(x) <&} where ¢>0. transifion B

We conclude this section by mentioning yet another widely used term: a assuming 1
compact manifold without boundary is called closed.

§2. The Simplest Examples of Manifolds

2.1. Surfaces in Euclidean Space.
Transformation Groups as Manifolds

A non-singular surface of dimension k in n-dimensional Euclidean space is
given by a set of n— k equations

=0 i=l,....n—k )

where for all x the matrix (3f;/dx’) has rank n — k. If at a point (xJ, ..., x3) on
this surface the minor J, ,  made up of those columns of the matrix
(2fi/éx’) indexed by j,,...,j,_,, is non-zero, then as local co-ordinates on a
neighbourhood of the surface about the point we make take

e )=, sy @

where tl_u: hatted symbols are to be omitted (see §7.1 of Part I). Since the .‘
surface is presupposed non-singular, it follows that it is covered by the

regions of the form U, where this s ints of
e o ymbol denotes the set of all points of
the surface at which the minor i1 ju-, does not vanish. e )

i
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§2. The Simplest Examples of Manifolds

2.1.1. Theorem. The covering of the surface (1) by the regions

lln Jou = w? |§h< < 45
each furnished with local co-ordinates (2), defines on the surface the structure of
a smooth manifold

ProoF. Throughout the region u, of the surface (1) equations of the

following form hold

Jn -

kbl 1 PR o RN S T R n—k,

where the ¢' are (smooth) functions. Similarly, in the region U, ,  with
coordinates

we have

XMttt Y, i=1,...,n—k
where again the ¢' are smooth functions. Throughout the region of
intersection of U;, ; . and U, ., _,, we have the following smooth

transition functions y — z and z — y (where for ease of expression we are
assuming 1 <j, <8, <j, <---; the general case is clear from this):

J‘1=21 (:xl).

phirl mght (=xh"Y),
e(ys. ) =2 (=x™),

}Jn - it (=le+1)!
....................................... 3)
yrot=ght Ghesr 1y
Pl ) (=)

=zt (=x1*1),

r== (=x").

ual

It is immediate that the two transition functions displayed here are mut =

inverses, completing the proof of the theorem.

Remark 1. It is not difficult to calculate the Jacobian of the transition

function y — z: it is given (up to sign) by

Ju...ln—t #0 i \-\‘

Jp-w=17

1odn-k
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1o see (much as in §7.2 of Part 1) that lllt’:| tangent y
e l..I it I "ulm (bl with the linear subspace of R “‘"’“’“Inl' lﬂ“‘ -
L fold (1) 18 WiE §
”‘lul:: l::i ‘ A the system of equations
solutions ¢
“h ¥,
‘|‘ .
(4
Yot pe mo,
ox*
/0x"), | = e orthogonal (i
The (colvectors grad Jfi = (@f/ax*), i=1,....M k, ar £ (in the

Jf the standard Euclidean metric on [?") to the surface at each poiny,
SCNse ¢ o i

Our next goal will be that of shnwfng that a nun-singuly surface in
Fuclidean space can be oriented. For this purpose we need to introduce an
alternative definition of an orientation of a manifold. : :

To begin with, consider at any point x of an n-manifold M thc_vx_lrlous
frames (i.c. ordered bases) t for the tangent space to M at x each consisting, of
course, of n independent tangent vectors in some order. Any two such frames
t,, T, are linked to one another via a non-singular linear transformation 4
which sends the vectors in t, to those in t, in order. We shall say that the
ordered bases t,, 1, lie in the same orientation class if det A >0, and lie in
opposite orientation classes if det A < 0. (Thus at each point x of the manifold
M. there are exactly two orientation classes of ordered bases of the tangent

space at x.) Since a frame t for the tangent space at x can be moved
continuously from x to take up the positions of frames for the tangent spaces
at nearby points, it makes sense to speak of an orientation class as depending
continuously on the points of the manifold. We are now ready for our
alternative definition of orientation.

11.2. Definition. A manifold is said to be orientable if it is possible to choose
at every point of it a single orientation class depending continuously on the
points. A particular choice of such an orientation class for each point is called
an orientation of the manifold, and a manifold equipped with a particular
orientation is said to be oriented. If no orientation exists the manifold is non-
orientable. (Imagine a frame moving continuously along a closed path in the
manifold, and returning to the starting point with the opposite orientation.)

2.1.3. Proposition. Definition 1.1.3 is equivall ¥
orientation on a manifold. quivalent to the above definition of an

Proor. If the manifold M is orie

nted i i
each point x of M we may choo, in the sense of Definition 1.1.3, then at

S€ as our orient,

(€0 &) consisting of the stand, \ting frame the ordered n-tuple
: ard basis vect 3
ordinate axes of the local co-ordinate system o Boaw b B

ordi i . | ] :
nate neighbourhood U s 1n which x lies. If x liés % t::} mh:o}M co- i
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neighbourhoods U, and U, then we shall have two orienting frames chosen at
x; however, since M is oniented in the sense of Definition 1.1.3, the Jacobian of
the transition function from the local co-ordinates on U, to those on U, is
positive, S0 that (in view of the transformation rule for vccl}urx} the two frar:u:g
lie in the same orientation class

Conversely, suppose that M is oriented in the sense of Definition 2.1.2
above, and that there is given at each point x a frame lying in the orientation
class of the given orientation of M. Around each point x there is an open
neighbourhood (in the Euclidean topology on M, and of size depending on x)

_\uﬂiclrmly small for there to exist (new) co-ordinates x',...,x" on the
neighbourhood with the property that at each point of it the standard
(ordered) basis (e, .. ., e,) of vectors tangent to the axes of x', ..., x"in order,

Jies in the given orientation class; this is so in view of the continuity of the
dependence of the given orientation class on the points of M. If we choose one
such neighbourhood (with the new co-ordinates introduced on it) for each
point of M, then their totality forms a covering of the manifold by local co-
ordinate neighbourhoods; furthermore, the transition functions for the
regions of overlap all have positive Jacobians, since at each point of such
regions the standard frames lie in the same orientation class (namely the one
given beforehand on M). This completes the proof. £

2.1.4. Theorem. A smooth non-singular surface M* in n-dimensional space R”",
defined by a system of equations of the form (1), is orientable.

Proor. Let 1 denote a point-dependent tangent frame to the surface M*.
Obviously the (ordered) n-tuple 7 =(t, grad fy,...,grad f,_) of vectors is
linearly independent at each point (since the (co)vectors grad f; are linearly
independent among themselves and orthogonal to the surface). Now choose t
at each point of the surface M* in such a way that the frame 7 (for the tangent
space of R") lies in the same orientation class as the standard frame
(ey, ..., e,). Since this orientation class is certainly continuously dependent
on the points of R", so also will the orientation class of T depend continuously
on the points of M. This completes the proof. ]

The simplest example of a non-singular surface in R*'' is the
n-dimensional sphere S", defined by the equation

x4 dxi =L

it is a compact n-manifold. Convenient local co-ordinates on the n-sphere are
obtained by means of the stereographic projection (see §9 of Part 1). Thus
let Uy denote the set of all points of the sphere except for the north pole
N=(0,...,0,1),and similarly let Us be the whole sphere with the soutlh pole
§=(0,...,0, —1) removed. Local co-ordinates (uy, - - u?) on the region Uy
are obtained by stereographic projection, from the north pole, of the sphere
onto the hyperplane x"*' =0; similarly, projecting stereographically from
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Figure 1. Local co-ordinates on the sphere via stereographic projections. '
ields co-ordinates (ug, . .., u%) for \
the south pole onto the same hyperplane yie d ,e |
|:: regionpvos (see Figure 1). It is clear from Figure 1 tha_t the origin and the \
two points uy(x) and us(x) in the plane M are colhn_car, _and that the |
product of the distances of uy(x) and ug(x) from ﬂ_wr origin |slumty_ From this ]
and a little more it follows easily that the transition function from the co- l
|

ordinates (i}, ..., u}) to the co-ordinates (ug, ..., u5) is given by (verify itl)

(..., w0 = ,“g' e A 6
gl(umz g‘ (u3)?

while the transition functions in the other direction are obtained by
interchanging the letters N and S in this formula.

The n-sphere bounds a manifold with boundary, denoted by D"*' and
called the (closed) (n + 1)-dimensional disc (or ball), defined by the inequality

f)=x}+---+x2,,—1<0. .
Note finally that the sphere S” separates the whole space R** ! into two non-
intersecting regions defined by f(x) <0 and f(x) > 0. :

Finally (before turning to the consideration of the classical transformation
groups) we introduce the concept of “two-sidedness”. k

218 Dﬂh A connected (n — 1)-dimensional submanifold of Fuclidean
space B® is called two-sided if a (single-valued) continuous field of unit :

normals can be defined on it. We shall call such a submanifold a two-sided

hypersurface. (See the remark below for the Justification of this)

21.6. Theorem. A two-sided hypersurface in R

is orientable.
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Remark. [t will be shown in §7

that any two-sided h o
ypersurface mn P
defined by a single non-singular ¥ %

Cquation f{x)= 0 (and hence is indeed a
I*nrw;\-‘llll'lmr;.1 whence it hjllmﬂ that such a hypersurface always bounds a
manifold-with-boundary. Somewhat later, in Chapter 3, it will also be proved
that any closed hypersurface in R* 18 two-sided

The transformation groups introduced in §14 of Part I constitute import-
ant instances of manifolds defined by systems of equations in Euclidean
space. Thus in particular

(1) the general linear group GL(n, R), consisting of all n x n real matrices
with non-zero determinant, is clearly a region of R™;

(2) the special linear group SL{n, R) of matrices with determinant + 1 is the
hypersurface in R™ defined by the single equation

det 4=1;
(3) the orthogonal group O(n, R) is the manifold defined by the system of
equations
AAT=1,

(4) the group U(n) of unitary matrices is defined in the space of dimension
2n* of all complex matrices by the equations

AAT =T
where the bar denotes complex conjugation.

In §14 of Part 1 it was shown that these groups (and others) are smooth
non-singular surfaces in R (or R*""); we can now therefore safely call them
smooth manifolds.

Note that all of these “group” manifolds G have the following property,
linking their manifold and group structures: the maps ¢: G— G, defined
by @(g)=g ' (ie. the taking of inverses), and y: G x G—+G defined by
¥ig, h)=gh (i.e. the group multiplication), are smooth maps.

2.1.7. Definition. A manifold G is called a Lie group if it has given on il‘a
group operation with the property that the maps ¢, ¥ defined as above in
terms of the group structure, are smooth.

All of the transformation groups considered in Part 1 are in fact Lie
groups.

2.2. Projective Spaces
We define an equivalence relation on the set of all non-zero vectors of R**!

: e - i
(regarded as a vector space) by laking wo non-zero vectors (o be equivalent
they are scalar multiples of one another. The equivalence classes under this

v T
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1s of (real) projective space of di
»n are then |::Lc;!;:’hh‘:"“:;2‘:: -‘.pHC(C comes with a natural manifgly
: -isely defined bck:w.)_ b
« an alternative {topologicatly cqgwalcnt) dCSC:pII(?n‘Df RP'- !
~ he set of all straight lines in R"*! passing l_h‘O‘}Eh the origin. S?m i
Consider t chl line is completely determined by any d!rectmn vector, and singe
_— sm“!o scalar multiple of any particular direction vector serves equally
a“{ln::-:;v take these straight lines as the poiqts of Ho}:' Now each :,{ these
::rcal.ghl ines intersects the sphere S* (with equation () =R e (,‘«’}.= 1)ay
exactly two (diametrically opposite) points. 1_‘hus lhe points of _RP are in
u}.e-ta--one correspondence with the pairs of diametrically opposite points of
.sphere. We ma A :
;rh:n: Ss'?:y “glueing”, is they say, that is by identifying, dx‘ametmallly“cal:q;.m'ue
points. (We note in passing the consequence that functions on RP" may be
considered as even functions on the sphere 5™ f(y) = (=)

relatic

Examples. (a) The projective line RP' has as its points pairs of diametrically
opposite points of the circle §'. Since every point of the upper semicircle
(where y>0) has its partner in the lower semicircle, we can obtain (a
topologically equivalent space to) RP" by taking only the bottom semicircle
{together with the points where x =X 1) and identifying its end points
x = + 1. Clearly the result is again a circle; we have thus constructed a one-to-
one correspondence (which is in fact a topological equivalence) between RP'
and the circle §* (see Figure 2).

The analogous construction can be carried out in the general case, i.e. for
EP". One takes the disc D" (obtained as the lower half of the sphere $*) and

therefore think of projective space RP" as obtained

identifies diametrically opposite points of its boundary. (The case n=2 is
illustrated in Figure 3.)

i

Figure 2
Figure 3
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(b) In §14.3 of Part I a homomorphism from the group SU(2) onto the
group SO(3) was constructed, under which each matrix A of SU(2) has the
same image as — A (i.c. having kernel | 4 1}), or, in other words, identifying
the points A and — A of the manifold §U(2) in the image manifold 50(3). We
saw in §14.1 of Part 1 that there is a homeomorphism between the manifold
SU(2) and the 3-sphere §* under which matrices A and — A are sent to
diametrically opposite points of §*. Hence we obtain an identification (in fact
topological equivalence) of SO(3) with projective 3-space HP”.

We now introduce explicitly a (natural) manifold structure on the
projective spaces RP",

For this purpose we return to our original characterization of FP” as
consisting of equivalence classes of non-zero vectors in the space """ with
co-ordinates »°, ..., )" For each ¢=0,1,...,n, let U, denote the set of
equivalence classes of vectors (y7, .. ., y") with y* # 0. On each such region U,
of FP" we introduce the local co-ordinates xj, ..., x; defined by

1 }‘o =4
x't?:;,,!xzszn 2
AR AR (6)

q I q I

Clearly the regions U, g =0, 1,...,n, cover the whole of projective n-space.

We next calculate the transition functions. For notational simplicity we do
this for the particular pair U,, U,: the general formulae for the transition
functions on U;n U, can be obtained from those for Upn U, py the
appropriate replacement of indices. Now the co-ordinates in U, are given by

Xt’:‘—‘—o,xa=y—o----.xﬁ=

and in U, by

Hence in the region U, n Uy, where both 9, y* # 0, the transition function
from (xg) to (x,) is obviously

o X0

1 x% Xg 0
xi:—i|xfz—l‘x::=-7,...,xq=—1. (T)

Xg Xo Xo Xo

(Note that x)=y'/y° is non-zero on Uy U;) The Jacobian of this
transition function is given by

1

- Bt i+l
E e
Jugp-ay=det|  Xo % kb =_(;{)'—“_ ]
(b xb
Vilnlaus universitefg «<rr-xorrrrr et




| Examples of M-‘.h“

| functions 0P UynUy are

1%
] lfan!lllt‘l
— ener . as local coordi

po—— poted ‘t"l‘ " dlows that pr with the ¥ IfPIIW]hdm".
ohamned gmilarty: 1 qmooth manifold. The manilo ith n = 2)
m‘p.mulhm" - ""jP‘ in this case the region Ugs called the finite pary
n;nl&\““ f1e .
of the projectio -l:: . casily ShOWD: the one-10-0n¢ corresponf];m

Finally we m;t: " p? described in the above examples, are in fagg
gt +RP
& Seomorphisms

similarly; 1S points are the

projective space CP"
of non-2e10 vectors 1n a+1 ynder the analogous
identified), and the local co-

(\qml.llrm:t ¢l »
ie. scalar multiples are .
oods, with their co-ordinates are defined as 1 the real

lu—dumensional smooth manifold.
we consider in detail the com

i Consider the (complex) function
2% ion is defined (and one-to-one) on all of CP!
\ lkncc class of) (0, 1): we shall formally define wg as taking the

point. Thus via the function Wo the complex projective

ith the “extended complex plane” (ie. the

121. Theorem. The jective li is di

5 Mot 24 sf_;:-:mplex projective line CP' is diffeomorphic to the

i mp:rnn:.l'n.: z: the _wu}pkx projective line consisting of all
valence classes o pairs (i.c. non-zero pairs determined only up

w’ ‘1 # Z"') with Z #* 0. we iﬂt!ﬂdm local CO-UTdi.I'I.ﬁ(ES Ug, U, '
0 Yo

defined i
by ity + ity = wo = 2'/2°. (These local co-ordinates may be regarded

as defining a one-lo-one
map from U, onto the real plane R?) Similarly. .

b Ve
u _l by u, +iv, =w,; =2 /2", will serve as co-ordinat
defined + w TV es on the

region U, consisting of pai
pairs (z°, z') (up to scalar multiples) with z' #0. '

Clearly the regions
Uy and U
b o and 1 cover CP'. The iti
{ BTN e Sagics of imtnimction s g::::s:xon function from
Y

(“hl?.]a(_’_'fo? Vo
X Gy w+od)
or, in complex notation, by £ 1+v§)

7 Uy +ivy = w, =w_ ':‘E—iun
. ‘ | " +vd
&MMM‘“ mththefqmuh(i]lm the case n = 2)

py simply multiplyi
z, - ‘\'1. .

A= (?:; =0 )
unique only UP -
pumbers of modul!

Complex projeﬂit

g2t = {ZI}_-}w'-i
pariable) with z, L
form 7.

Thus we have

such that the pr
the circle 5* = {
a map

S‘!

2.3. Exercis

1. Prove that
2. Prove that
group, is a
3. Prove that
hood of th

4. Prove that
5. Prove tha
6. Quaternio




§2 The Simplest Examples of Manifolds 0

It is on account of this result that the extended complex plane is often
called the “Riemann sphere”™. Note that if w=u + iv provides local co-
ordinates u, v for the finite part of the extended complex plane (i.c. for the
ordinary complex plane), then 1/w provides local co-ordinates of ;‘ (punc-
wred) neighbourhood of the “point at infinity” oo.

S8 THES fo

We nu:x return to the _conmdera(ion of the general complex projective
space CP". From each equivalence class of (n + 1)-vectors we may choose as
representative a vector whose tip lies on the unit sphere $2"* ', ie. satisfying

12°P + . 422 =1,

=T =& a

by simply multiplying any vector z=(z°%...,z") in the class by the scalar
1 =(32-02") . The resulting vector (with tip on §2"*') is then clearly
unique only up to multiplication by scalars of the form €', i.e. by complex
numbers of modulus 1. We therefore conclude that:

Complex projective space CP" can be obtained from the (unit) sphere
b o {Z!E=u|2'|2= 1}, by identifying all points 'z on the sphere (¢
variable) with z, i.e. by identifying all points differing by a scalar factor of the

form €.

= - O

Thus we have a map
St S P, (8)

such that the pre-image of each point of CP" is (topologically equivalent to)
the circle S = {¢'®}. In particular, in view of Theorem 2.2.1, we obtain thence

a map

1
S5, (@O )ow=5 (PR =1)

2.3. Exercises

_ Prove that the odd-dimensional projective spaces RP2*! are orientable.

containing the identity element of a Lie

2. Prove that the connected component
group, is a normal subgroup.

3. Prove that a connected Lie group is generated by an arbitrarily small neighbour-
hood of the identity element.

4. Prove that every Lie group is orientable.

5. Prove that the projective spaces RP" and € P" are compact.
i i of non-
6. Quaternion projective space HP" is defined as the set of equivalence classes of nd
zero quaternion vectors in fHin* !, where two (n + 1)-tuples are equivalent if one is a
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S:rnnimplicit)‘
see Definition 2.1.6)has a distinguished pomlt[g;,;; G
dentity elcmen-ll‘ and, being by definition a smooth ma;n of },io;s(?
s e T=T,, at that point. For each he G lhe‘ transformatior
tangc;:ﬁs;p; byg -:;:igh ! is called the inner aulomarphlsr_n of G determined
by h Any such transformation of G clearly ﬁx_es the identity element g =1
(since hgoh ! = go) and therefore the induced linear map of !he tangent space
T to G at the identity (see §1.2 above) is a linear transformation of T, denoted
by

Every Lie group G {

Ad(hy T—T.

From the definitions of the inner automorphism determined by each element
%, and the linear map of the tangent space T which it induces, it follows easily
that Ad(h ') = [Ad(h)] " and Ad(h, h,) = Ad(h,) Ad(h,),forall h, h,, h, in G.
Hence the map h+— Ad(h) is a linear representation (i.e. a homomorphism to a
group of linear transformations) of the group G:

Ad: G — GL(n, R),
where n is the dimension of G. (Note that for commutative groups G the

representation Ad is trivial, ie. Ad(h) =1 fo
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The functions yix, y) (=g.8:) s
2} and g =g :
following conditions (arising from the :Cl::lil:g :rn;:cr(l‘:-:’:?:ygl:)al:s}ry -

() ¥(x,0)= (0, x) = x (property of the identity);
(i) Wix, @(x)) = 0 (property of inverses) 3
(i) vix, ¥(y. 2)) = wlU(x, y), 2) (associative property).

Given sufficient smoothness of the functi i
s ot 4
(i) (and Taylor's theorem) that 108 ¥(x, 1), it follows from condition

VG D)= x4y 4 b Py 4 (terms of order > 3) (1)

(where of it b3, = %y*/2x* 3y evaluated at the origin).

tow 'Clr 3 and n be tangent vectors to the group at the identity, ie.
elements '-:l t f space ]:“. and as usual denote their components, in terms of
our co-ordinates x*, by £, y4* respectively, The commutator
tangent vectors &, n is defined by L e

L&, 11" = (b5, — b2,)EPn. 2
This commutator operation on T has the following three basic properties:

{a) [, 1isa bilinear operation on the n-dimensional linear space T (where n
is the dimension of GJ;

(b} [ ml=—[n&l;
() [L¢ 7] {1+ LIS €3, m] + Cw. {1, €1 =0 (“Jacobi's identity™). (3)

(The first two of these properties are almost immediate from the definition of
the commutator operation. Here is a sketch of the proof of (c) as a
consequence of the associative law (iii) above: From (1) we obtain that

YW(x, ¥), 2) = Yo(x, y) + 2° + b5 0P (x, )z’
+ (terms of degree > 3 in ¥/, 2%).

Substitution in this from (1) yields an expansion of y*({s(x, y), z) in terms of
x*,y", 2 in which the coefficient of x*y"z" is b b8 ,. Repeating this procedure
for Y*(x, Y(y, z)) and comparing the coefficient of x*y"z” with that obtained in

the case of Y*(if(x, y), z), we find that
bj,bh, = bight, @
On the other hand from the definition of the commutator we obtain
LL&, ), £ = (B3, — big) L& mPT7 = (b5, — b3p) (b, — DA n'L.

It follows that Jacobi's identity is equivalent to
(B, — big)(bh, — B,) + (b, — b (b, — b)) + (55, — b3 (bl — b3,) =0,

which is easily seen to be a consequence of (4), as required.)
Thus the tangent space to G at the identity is with respect to the
commutator operation a Lie algebra; since it arises from G it is called the Lie

algebra of the Lie group G. (Cf. §24.1 of Part 1)
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commutato? t‘pﬂm(-‘:llctli-I the structural constants of the Lie algebra.
the indices B, %> :f: :ubgFUUP of a Lie group G is defined to be a parametrized
A”mhpdr:-rhthee manifold G such that F(0)= l_, F(t, + fz)': Flt,)F(ty),
;_uu.cl F 1‘:‘}“\. 1 Thus the one-param eter subgroup is determined by a homo-
RV A i G)
+» F(t) from the additive reals to Ty
murp*;.s: ‘m.;efd]mg we note parenthetically that left multiplication by a
ﬁlc[dB‘e:‘cm::‘lt h of an abstract Lie group G debines’a dificomorphism G
. G (g hg); the induced map of tangent spaces is defined as before to send
the tangent vector g(¢) to a curve git), to the tangent vector (d/dt)(hg(r)) to the
curve hg(t)) Now i F(1) is a one-parameter subgroup of G, then
dF dF(t+¢) d dF(e)
e -— Fi o=Fl)—1 s
= g (F(OF(@)l=0 = F() &
where the last equality follows from the preceding parenthetical definition of
the tangent-space map induced by left multiplication on the group by the
clement F(r). Hence F(t) = F(t)F(0), or F(t) 'F(t)=F(0), i.e. the induced
action of left multiplication by F (1) " sends F(t) to F(0) = const. Conversely,
for each particular tangent vector A of T, the equation

i (6)

is samﬁeld by a unique one-parameter subgroup F(t) of G; to see this note first
th:]t (6] is _|wh=n mm::m in terms of the function y(x, y) defining the
amm't:g‘:lﬁtmn :f points x, y ofl G)a system of ordinary differential equations,
. ::fres uzhlhc appropriate existence and uniqueness theorem for the
R A% ‘:r?::ms, has, for some sufficiently small £>0 a unique
ou e el I& The values of F(t) for all larger || can then be
°bm'ln ”dlbe g long eno{lgh products of elements F(5) wi
case that G is a matri (©) with |5 <&,
(see §14.2, 243 of Part 1),

for all vectors §onm
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Let F(r) = exp At be a one-par, ' !
eSS s L g o
wransformation Ad F(t) of the Lie algebra T = T;,,, which, since T is n-
dimensional, lies in GL{n, R). It follows that Adufl'ir) is a-onefpﬂrameter
subgroup of GL(n, R), whence the vector (d/dt) Ad F(1)|,.q fies in the Lic
algebra of the group GL(n, R), and so can be regarded as a linear operator.

EXERCISE

Prove that, as operator, (d/dr) Ad F(t),.0 is i i
e - given by B+ [A, B] for B in the Lie
algebra (which is identifiable with k") (As in §24.1 of Part I, w
3 §24. , we denote th
B—[A B]lbyad A:R" > R") : )

We next use the one-parameter subgroups to define canonical co-
ordinates in a neighbourhood of the identity of a Lie group G. Let A, ..., A,
form a basis for the Lie algebra T (which we may identify with R"), the
tangent space to G at the point g, = 1. We saw above that to each vector
A= E A;x"in T there corresponds a one-parameter group F(t) =exp At. To
the point F(1) (which it is natural to denote also by exp A) we assign as co-
ordinates the coefficients x', ..., x" in this way we obtain a system of co-
ordinates (by “projecting down from the tangent space” as it were) in a
sufficiently small neighbourhood of the identity element of G. (Verify this!)
These are called canonical co-ordinates of the first kind.

Alternatively, writing F.(t)=exp A;t, we have that each point g of a
sufficiently small neighbourhood of the identity element can be expressed
uniquely as

g=F,(t,)...F,{t.)
for small t,, ..., 1,. Assigning co-ordinates 1, = x,, ..., , = x, to the point g,
we thus obtain the co-ordinates of the second kind in a neighbourhood of the
identity.

EXERCISES

1. Given a curve in the form g(z) = Fy(tt,)... F,(1t,), prove that
dg L]
= = A,
dt r=0 l; i

2. Show that the “Euler angles™ @, ¥, 8 (see §14.1 of Part I) constitute co-ordinates of
the second kind on SO(3).

Co-ordinates of the first kind are exploited in the proof of the following
result.
3.1.1. Theorem. If the functions Y*(x, y) defining the multiplication of points

real analytic (i.e. are representable by power series),
o oot bourhood of 1€ G, the strcture of the Lie algebra of G

determines the multiplication in G.
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into functional notation, we have

. d g d i
A drl"”' ufdl[&rf:ln.t-nx'.”l:

e=0

= Wx )

dx’(c + 1)) dx*(1)
ax? g

- o = tylx(t))——
¥ = oix) de L_q ¢ « dt

If we now take the x* to be canonical co-ordinates of the first kind (in some
neighbourhood of 1) then by definition of such co-ordinates, x*(1) = A%,
whence by the above

A" = 3 A1) A*,
yielding
x* = v(x)x”. (10)
Our aim is to show that the functions r(x) are fully determined (in some
nelghbnurh_ood of 1) by these canonical co-ordinates. Differentiating the last
equation with respect to x*, we obtain

S=x"—1 +u5 (11)

By multiplying equation (9) by x* (and summing with respect to f§), and then
substituting from (10) and (11), we obtain

» 075 i
il B t(x) = 87 + ¢, X"},
whence, on replacing x by At,
at
:A'a—x; + vj(x) = 85 + ¢}, A"t} (12)
In terms of the new functions wi(t) =3{Ar) (also dependent on A) the
equations (12) take the form

dTi“F’: =8+ c.A'W, {19

which is a system of ordinary linear differential equations for the functions
wi(t), with initial conditions w3(0) = 0. Hence for each fixed A the functions
wA(t) are uniquely determined by the Lie algebra structure (since the system
(13)is determined by the structure constants cj, (as well as 4)). The w}in turn
determine the functions v%(x), and thence the multiplication operation ¥(x, ¥)

as the solution of the system (8) with the given initial conditions. (It is here
that the assumption of analyticity of the ¥(x, y) Fmers the picture, via for
instance the Cauchy-K ovalevskaja theorem on (existence and) uniquencss of
solutions of certain systems of partial differential equations.) This eompletg

the proof of the theorem.
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Earlier in this section we defined for each g in a Lie group G an
automorphism Ad(g) of the Lie algebra of G (namely, that induced by the
inner automorphism of G determined by its element g); it is thus natural to
call the automorphism Ad(g) an inner automorphism of the Lie algebra.
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(From (1) ;md.lhc fact that ,‘r[_tlr,_ x(=1)) =0 = Y1), y(— 1)), it follows that
the two negative terms vanish.) On differentiating with respect to t and then
getting ¢ = 0, we obtain for all sufficiently small © that

Ad(TNY) = ¥ 4+ [X, Y]z + O().
1t follows that
[X, Y]t + 0t el

Dividing by t and letting t—0, we get finally that [X, Y] e[ (since with
respect to the Euclidean norm every subspace of a finite-dimensional vector
space is closed). Hence (L, I < I, so that I is an ideal of L, contradicting the
assumed simplicity of L.

(ii) Let I be any ideal of the Lie algebra L, and let J be the orthogonal
complement of / in L with respect to the Killing form (i.e. J is the subspace of
all vectors in L orthogonal to I). We first prove that J is also an ideal of L.

To this end let X, Y, Z be arbitrary elements of L, J, I, respectively; we
wish to show that [ X, Y] is orthogonal to Z, i.e. that tr(ad[ X, Y]ad Z)=0.
Now it is easily verified from the Jacobi identity that

ad[A4,B]=ad 4ad B—ad Bad A.

Hence
tr(ad[X, Y] ad Z)=tr(ad X ad Yad Z — ad Y ad X ad Z),

and since a trace of a matrix product is invariant under cyclic permutations of
the factors, it follows that

tr(ad[X, Y]ad Z)=tr(ad Xad Yad Z—ad X ad Zad Y)
=tr(ad X ad[Y, Z)).

Since [Y, Z] € I and X € J, the final expression above is zero, as required.
The positive definiteness of the Killing form implies both that L=1@®J,
and that no non-zero ideals of L can be commutative (since the restriction of

the Killing form to a commutative ideal is zero). This completes the proof.
O

Remark. There is a stronger result than (ii), due to Killing and E. Cartan: A

Lie algebra is semisimple if and only if its Killing form is non-degenerate. In

addition to the above argument, the proof of this stronger result uses the fact
that the Killing form of a (non-commutative) simple Lie algebra cannot be
identically zero. This is in turn a consequence of a theorem of Engel whic!n
states that the Killing form of a Lie algebra L is identically zero if and only if
the Lie algebra is “nilpotent”; i.c. if there exists a positive integer k such that

[[ '[All A:]....], At] =0
for all All"‘.A.EL
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(We note that it can be shown that
automatically be smooth.)

A representation p: G — GLIN, R
is one-to-one, ie. if its kernel is tri

il p is continuous, then it will

].lur G~ GLIN, C)) is called faithful if nt
group triv m'll_\'_ has a faithful Lie rcp:é::ﬂi‘;‘:?l,l1.’r[\ ||| :'::T;p':c;clm,:i:m: B
also a topological equivalence), However, as we shall now show (b nr:::alCh “1
an example) not every Lie group can be realized (ie. has a l:nhl'uln ‘1[::
representation) as a matrix Lie group. As our example we take the rn;l
G = SL(2, R) consisting of all transformations of the real line of the [ngrm :

X x + 2na + ‘ In et (16)
1

where x€R, aeR, zeC, |z <1, and In denotes the main branch of the
natural logarithmic function, ie. the continuous branch determined by
In 1 =0. (Note that in (16) the argument of the function In is a fraction whose
numerator and denominator are complex conjugates; hence the fraction has
modulus 1, so tha_t its natur_al Ioga_rit_hm is either zero or purely imaginary,
and therefore the image of x in (16) is indeed real (in fact between —n and r).)

It is not difficult to see that the group SL(2,R) is a connected
3-dimensional Lie group (with the obvious co-ordinates a and the real and
imaginary parts of z). The subgroup isomorphic to Z consisting of those
transformations (16) with ae Z and z =0, is easily seen to be central in the
whole group §L(2, R) (i.e. each of its elements commutes with all elements).
(We shall see below that in fact it coincides with the centre of SI L(2, R).) Note
also for later use that the transformations (16) with ae R and z =0 form a
one-parameter subgroup of fL(Z, R).

Each transformation (16) has the property that if x+»y under the
transformation, then x + 2rk+y+ 2nk for all ke Z. Hence each such
transformation yields a transformation w = ¢ — " of the unit circle w|=1.
It is easily verified that the latter transformation has the explicit form

e (17

1—iw

If one conjugates this by the linear fractional transformation 2 = l'[UJ‘f"V
(1 + w)], which maps the unit circle (with one point removed) to the re ﬁ:;:
(and the interior of the unit circle to the open upper halr:planc) then one 2
that the group of such transformations is isomorphic to suzt- ::)ef{ i’;m}
(Alternatively one may use the results of §13.2 of Part [ to get tha le; l}l:;
of transformations (17) is isomorphic to SU(1, .l.v (11} SR, R 'ti:
We thus have a homomorphism from our group SL(%. s sRuz.i : }“ has
kernel the above central subgroup isomorphic to o gia t)tfil infinite
trivial centre, it follows that the centre of SL(2. R) is precisely

cyclic subgroup.
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block diagonal form with blocks of the same size as those of 4, and with the
block corresponding to (18) having the form e* B,(t) where

1 oy 4ai0,® laaia - kl'a, at
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.,"w K be so arranged that any single equation #-0ftite: prven mateini Whicks s
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EXERCISES

|. Calculate the Lie algebra of the Lie group ﬁ.(l R)

2. Verify that the above-described group h ism SI
/ p homomorphism 5L =5
1s a local isomorphism in some neighbourhood zi ‘!:1: Lde:lzl;l';ri' ppi i

§4. Complex Manifolds

4.1. Definitions and Examples
We now introduce the concept of a complex manifold.

4.1.1. Definition. A complex analytic manifold of complex dimension n is a
manifold M of dimension 2n, for which the charts U (M = { J, U,) with their
local co-ordinate systems zi=xj+i)y, a=1,...,n, are identifiable with
regions of n-dimensional complex space C" It is further required that on each
region of intersection U, n U, the transition functions from the co-ord'!nales
23 to the co-ordinates z; and in the reverse direction, be complex analytic (see

§12.1 of Part Iy

7 o )
Fi-?’E{}; ai:._l].

We define a holomorphic map between complex manifolds to be one which

i ic (i i local co-ordinates on the
is complex analytic (in terms of the given complex lo :
manifolds). Holomorphic maps from a complex manifold to the complex line

i i ifold. A bijection
€ will be called analytic or holomorphic functions on the manif . :
between complex manifolds will be said to be biholomorphic if bot;l:'e an;l i::
inverse are holomorphic. If two complex manifolds are such that

a biholomorphic map between them, We shall say that they are biholomorphi-
cally equivalent or complex diffeomorphic.
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The simplest examples of complex manifolds are furnished by regions of
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holomorphic on mum-Modulus Principle™). Let [ b
= |Inf|'”‘h' S';m" region U of n-dimensional complex s o
) : ; L ere
funct .” (ii\ .: ocal maximum at some s B Y £ i’Pul; C". If the
for all points F 7nf U sufficiently close g ] - » A, Y PN <\ f(P)]
m-;ghhmrhnud of P“_ o then f is constant in some

Prook. Since the function | £ will
¥ clearl c
complex line through P, it suffices I;rp);(:l:cvich?: ilmdI m:;mm;m iy s
g ; emma for the case n= 1. W

may al_;nfdg&l:n{l)c without Ipss of generality that P, =0, and ma:l N}]!#cﬁ
lSlﬂf‘F 1 _fl _‘[— , the assertion of the lemma is trivial), By multiplying the
function f, if necessary, by an appropriate complex number we may further
suppose that f(0) is a positive real number.

In‘§26_3 of Part I we gave a proof of the “Residue Theorem” of complex
funcl!on theory; the well-km_)wn “Cauchy integral formula” for holomorphic
functions of a complex variable is an almost immediate corollary of that

result:
0= iﬁ ik
k4] v z

where 7 is any circle enclosing the origin. Putting z = re'® where r is any
constant small enough to ensure that both y and its interior are contained in
U, this becomes

2n

1
JO =5 L fre'®) do, A

which formula obviously must also hold if in it f is replaced by Re f {or
Im f). . _
i i hbour-
The function g(z) = Re(f(0)—/f(2)) 18 non-negative on some neig
hood of the origirf.( since, by hypothesis, for all z sufficiently close to 0 v:‘c have
£(0)—|f(2)] = 0, and since also |Re f(2)l S |f(2)l. On mel olhe‘rhhtan since
formula (3) continues to hold with f replaced by g1t follows thal

J-:l g{l‘?") dy =0
0

ufficie ighbourhood of the
. Hence throughout some nen;h

fof '.“ - ntu:e"ind:::t{call; zero, e Re flr=f (0). Since | f iz)ﬂ:ﬂ: u(:::

:;::l:nﬂghg:rhood of the origin, W€ deduce that f1 (z)=/(0) on .

neighbourhood, as required.
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“,.f p. then by the ™ nuity 't that M' 1S open. Hence gy,
fiP)=Fe — ac o disiod

has 0O tmund.lr""]m ontradictind © = Ly io the union of e g dllsj(;m}‘l“;m
: > lie in . _whence & s M’ is empty (which ;
hatrplr,mm of M' 15 alix;‘;‘g:‘;l is mlpmslhlcl lmf;plcte'i the proet o4 ll::
com cl : s C Y
-.;u Since M 15 \Aam[’:;ru-ht!ic space s e O

)y or

certainly 15 not
theorem ifﬂfd of(:" of dimension greate,

qic subman
Corollary. AnY complex analytic §
415 7. "
than zere, is non-compact.
that M1s2 compact ¢

» for some n and let f=/ nent of M, each
embedded in ‘{ g:;me theorem, on ach Co'.momd : Omp;? that coM‘
Then in view o ]1'm o of f, being an analytic function O ;macted
e !': i:l:r:;xam Hence f maps each connected component of M to 5
component, 15 C 2

o
single point, which proves the corollary.

omplex analytic manifold which can be

PROOF. SUPPOSE " be an holomorphic embedding

The classical complex transformation groups constitute important

examples of non-singular complex surfaces:

(1) GLir,C), the set of all non-singular, complex, n x n matrices, 1s an open
region of the space C** = R*" of all complex matrices;

(2) SLin, C), the surface in C* of all unimodular complex n x n matrices (i..
of determinant 1).

(3) Oln, C), the surface in C"* whose points comprise all complex orthogonal
matrices, ie. complex matrices A satisfying 44" = 1.

The non-singularity of these surfaces is verified much as i i
e ch as it was for their real

Each of these manifolds is a Lie

TOU| it1
maps ¥ and ¢ defining the group stg P (see Definition 2.1.6), In fact the

. F‘n

sa. Comp!

ructure:
V:GxG- g, V(g h) = gh;
9.G-G, (g)=g~?
are everywhere com o) =g,
plex analytic (;
are &3 ; ytic (ie. hol ; :
“mples of matrix “compley | 4 B‘r’oz':sfphlci- Thus the above groups
416, Defini : '
tion, A | ;

Called & compley 14 ¢ BrOUp G which js , compl : ; ol
870up f the above map, v Plex analytic manifold, 8

S Y and ¢ are complex analytic

1ex Manifolds

PROOF As usual we
difficult 1o see that th
analytic map (betwee
ted, Theorem 4.1.3
h(_‘mumcrphlsm. we
If g(r) is any (smo«
g(0) = X say, and if
part (i) of Theorem

since Ad(g()N(Y) =
by Corollary 312,

It can be show
groups are the “c
€1s - -1 €2, denOLE
purposes any bas
have as its points
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vectors:

(Such integral li
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Obviously tw

3ﬂdf|,...,f2..l
e;in I':

Since the matric
follows that the

Thus far we
endow it with i
neighbourhood
the natural ma

whtm [hm op
Testriction to e
S0 that their ;
verification th:
Structure, T2
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Proor. As usual we ¢

deffacult to see that the adjoim Tepresentan

analytic map (between complex mandoid

ted, Theorem 4.1.3 implies tha Ad

homomorphism. we must in fact have thas Adig)=lforalige G
If g(1) is any (smooth) curve in G Passing through the identity element, with

#10) = X say. and if Y is any elemeny of g then, as we showed in the &y
part (i) of Theorem 3.1.4, 4 4 Pope

Ad(z()NY) =¥ + i[X, Y]+ 00

Since Ad(g(()NY) = ¥, we conclude thai [X,¥)=0forall X,Yeg whence
by Corollary 3.1.2, G is commutative, as required. O

It can be shown that inhﬂlhoﬂymmwmu
groups are the “complex loﬁ',whﬂsmshaﬂmcmﬁder.hwnlb(
€,.-.-,€3, denote the standard basis vectors in R =C". (In fact for our
purposes any basis for R** will serve) The complex torus T2* is defined 1o
have as ils points the equivalence classes of vectors, where two vectors are
equivalent if they differ by an integral linear combination of the given basis
vectors:

el
z~z+ ¥ ne, nel
=}

tSuchinlep’allinﬂrmmbiaauonsfmmawbgrwprolC'aihjth:
integral lattice determined by the given basis e,,...,e,,) Thus T2 is the
quotient group of C* by I':

™™ =0T,

Obvious integral lattices T and I, determined by bases e,, ..., €5,
andﬁ.,...}:r:mmpdivdy.mm’ithmﬁﬁ:hrﬂm
em I
fi=rle, e=mf, :
Shcﬂtminlnf)aad(u})humertrhadmnmlmn
foll g s s ;

mgﬁwmwmmdaem‘;‘“.ﬂe.m
endow it with its manifold structure by taking as local (compiex Wac-
neighbourhoods the images of appropriately chosen open subscts of C* under
the natural map

c’-’r’.-c.ﬂ-v

where these open subsets are chosen 00 | other hand
maaﬁdmmrg-:z”" wh_:::l:nidlk
nﬁumww“ﬁ » Im“nmﬁﬁm
structure, T* is indeed a complex Lic group-
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A Lemma. If
‘\-I.-: fractional transformation of the form
. omi+n
TN

where the malrix ( " "J is integral and has determinant + 1, then the tori
P 9
determined by t and ©' are biholomorphically equivalent.

Proo. In view of the conditions on the coefficients m, n, p, g, the integral
fattices determined by the pairs of vectors (1, 7) and (pr+q-1, me+n-q

f:::“:ff l:mml:c now follows from the fact that the second pair defines a
h, by the remark preceding th is bi i
e o Ey” :';g the lemma, is biholomorphically

0

Remark. [t can be of, .

determised by “""P;C:,::n::::sz ‘:}C ';ccqry of elliptic functions) that tori
Phically equivafeny, | CCMUY close to one another, are not
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even for n=1
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Show that alm

On an at
complex van
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where the s
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ectors there will be n whig i
\u.to;;w e < h'l:eh‘l;rc linearly independent over €, by re-indexing if
necessi -\" th s PRc ale,,...,e, are linearly independent over €. 1f
we oXpross (e TRMAINING YeCtOrs o,y 1y .. 15, in terms of the first n sa)l‘

A

L
e'.-.,-j}__lb”p,, k=1,....n,

we obtain a complex matrix B = (by,), which (as in the particular case n - |
examined above) determines the torug up to a biholomorphic cquivaienu-. It
is casy 1o see that the imaginary part of the matrix B must be non-singular
since otherwise the vectors e, . .. + €2, Would be linearly dependcnl mril: ;,‘

s Deﬁni!im_l. A‘complex Loy T?" is said 1o be abelian if for some basis
P €1 of !ts : mlegral lattice, the above-defined matrix B = B s
symmetric and its imaginary part H = (hiy) = (Im b, ) is positive definite; i, if

bu=by and h, EE 50,

for all non-zero real vectors (¢, ..., &),

For example, the one-dimensional complex torus determined (up to a
biholomorphic equivalence—see above) by a complex number 1 with Im t
> 0, is abelian; since the tori determined by  and —1 clearly coincide, it
follows that in fact all one-dimensional complex tori are abelian. However
even for n = 2 non-abelian tori exist.

EXERCISE
Show that almost all 2-dimensional complex tori T* are non-abelian.
On an abelian torus the Jacobi-Riemann O-function 0(z,,...,z,) of n
complex variables, is defined by
(4)

1
ey B expi<{= ) bymm;+ mz},
O(z,, z,) m';'m p {2§ MM, ; e
where the summation is over all n-tuples (my,...,m,) of ig{:gets. T_he
condition that the imaginary part of the matrix B = (b, be positive definite,
guarantees convergence of the series.

42. Riemann Surfaces as Manifolds

A Riemann surface is defined (cf. §12.3 of Part 1) as a non-singular surface in
C? given by an equation of the form 5
j'(z, W) = 0' (3)
i i i pol il in z
where f(z, w) is an analytic function of zand w (for instance & ynomial
and Wi-ﬂ';‘llc,condiﬁon for non-singularity, which makes the surface a one-
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substitution 2 =y, w=Y

1 e .
flz,w}=m-FQ,(y°,y.y). |
: ; . i
where (0, is a homogeneous polynomial in three variables. This furnishes z
device for re-realizing our surface f(z, w)=0 in C?, as the surface in the ‘
projective space CP* given by the equation

2.0% ¥,y =9, (6

except that the points of the latter surface for which y° =0 correspond to

“pomnts at infinity” on the original Riemann surfa j i
: ity” ¢ ce (5). The ad
these points at infinity has compactified our surface: & —
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-xamples. (a) Let f(z, w 2
'.h:.r':“\ttaisi tl : :)l ’-t “:’ m“ h #then 0,(y°, y!, y2)m (y2p2 - ¥ We joi
! . : the domain of the (extended) multj | o
function w = /z h],: a line segment %52 15 pei k ; ple-valued
Riemann sphere 57, dlﬂmmurphic to (,‘P‘p tololr:::-w ‘:;\V!dly_ we “cpt" the
segment a removed, depicted in Figure 4) “' in the sphere with the
that the restriction of the (extended : Bt

slit &, consists of two disjoint cop,

pieces are called the “branches” of the multi-valued function.) At the points 0

;:il ::;;;E i,e:(;::gg::‘l;?::gn w;— /7 is single-valued. The desired surface is
oundary segment a, of the com

ponent denoted |

in Figure 5, with the boundary segment f§ {
) i 2 of the region 11, and the bound
segment f, of region 1 with the boundary segment o, of region [[u:f i:!‘lz

surface (as indicated in Figure 5). It is intuiti i
this cutting and pasting, we Obl,ain a ;;n:tr:ﬂ):i!::;zzl:p::?tlzs;muu #
{b) We next consider the case f(z, w)=w?_ p
polynomial of degree 2 with simple roots Z=1,, 2=12,, 7, #2,. Join the
points z,, z; by a straight line segment on the z-plane. For z outsi(lle that line
segment the surface f(z, w) =0 falls into two disjoint connected parts. If we
adjoin a point at infinity to each of these connected parts, they will be as
shown in Example (a), with the difference that here z; # o (see Figure 6). As
in that example, on identifying the appropriate boundary segments (x, ~ f,
and f, ~a,), we see that the Riemannian manifold is in this case also
diffeomorphic to §? (with two points removed).

2(z), where P,(z) is a

Figure 4

Figure 6
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Figure 9

() Consider [z, w) = w* — Py(2) where P32(2| is a ‘polync_tmllg! of dsﬁrec 3
with distinet r00ts 2o, 2,, 2;. Make cuts on §° as lndlcaled in igure \ !‘oF 2
off these slits the extended surface f(z, w)=0 again falls into two disjoint
connected pieces, as shown in Figure 8. On identifying the appropriate edges
of the slits on these two pieces (x, with fi,, a; with f,,y, with &, y, with §,, as
indicated in Figure 8), we obtain the 2-dimensional torus (or “sphere-with-
one-handle”—see Figure 9) with one point removed.

(d) As a final example, consider Sz w)y=w?—
polynomial of degree 4 with distinet roots
pasting as in Example (c) (with »
l-dimensional torus

Py(z), where P,(z) is a
. 20, 2y, 23, 23. By cutting and
+ Playing the role of o), we again obtain the
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Iy
Ty

®, .
In
e - o
z - Fhor Ao
"w—r
Figure 10

roots on the original surface, we s
the ith cut liec on (or rather are
pieces Uy, U,. We now glue the:

tay on the same branch

) The edges a,, B, of
boundary segments of ) different cuml'u:f:lad
se edges back together as follows

U, @) ~(U,, g, U, 8)~ (U, ).
(This is justified by the fact that if on the ofis:
r i original surface wi
piece D}";agpmaghms the_edg: o, then on crossing it we paessms:::;::;:go:rt:
:;:;(,;Ch < ;a{:c th:" :d (:r;h corresponding edge B, and similarly if we
e 1 &€ [, we cross over onto U, (with corresponding edg[c]
For odd n the construction is similar, with =
S ¥ Zy+1 = o0 taken as the (n + 1)st

§5. The Simplest Homogeneous Spaces

5.1. Action of a Group on a Manifold
We begin with the definition of such an action.

5.1.1. Definition. We say that a Lie group G (e.g. one of the matrix Lie groups
considered in §14 of Part 1) is represented as a (Lie) group of transformations of
amanifold M (or has a left (Lie)-action on M) if there is associated with each of
its elements g a diffeomorphism from M to itsell

x=+ Te(x), xeM,

h e G (whence T, = 1), and if furthermore T(x)

such that T, = T.T, for all g,
y o . x (i.e. the map (g, x)— Ty(x) should be

depends smoothly on the arguments g,
a smooth map from G x M to M). _ 2

The Lie grgup G is said to have a right action on M if the above definition
is valid with the property T, T, = T, replaced by T,Ti = Ty

If G is any of the Lic groups GL(n, R), O(n, R), O(p. 4) of gﬂﬂ- <), l';'(;);
U(p, g) (where p + q = n), then G acts in the obvious way on t mnufol
or R# = C™ moreover, in these Cases the elements of G tfthU_hMm
‘l‘lmlormaﬁommoummf,mommenlly,lwmuphﬂl action
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a homOgENcous space for the Lie
“I€ group Ofn +

ations of R**\. The isotropy
Brow
comprised of all matrices of the fmmp of the

1 0
0 ,1)' A € O(n).

Hence by Theorem 5.1.4 above S” can be ident !
the quotient dcnptcs merely the set 0‘; lebeﬂ.:;:::m ::‘:h O:n + 1)/0|nnwh;rc
is not norm_al in O(n+1)). In fact S*= Ofn + 1)/0 1solropy group, which
diffcomorphism (cf. the above remark), = }/O(n), where = denotes
The group SO(n+ 1) is also transitive "
above, the isotropy group is isomorphic ‘Oogo-i;}‘a:,d.‘ ha::aig:l:lx ‘l’o l?;e
s* with SO(n + 1)/50(n), and again 5" = SO(n + 1)/S0(n), as ty identify
of SO(n + 1) , as quotient space

(b) From the definition of real projectiv o isti
straight lines through the origin ilr)l lgi"”. :Nip:(;:a?npa ::acl‘:}s?;?:zz:;hel
0fn + 1) on the manifold RP". The subgroup of orthogonal lransformatiogs
fixing the straight line through O with direction vector (1,0 0) is
comprised of all matrices of the form A

+1 0
o Al A € O(n).

Hence the isotropy group is isomorphic to the direct product O(1) Ofn),
and, again essentially by Theorem 5.1.4, we have

RP" = O(n+ 1)/0(1) x O(n).

1) of orthogonal
; transform.-
point x-—ll.().....fhn:r'mi\

(c) The additive group of reals # acts (transitively) on the circle
§* = {¢***#} in the following way:
-n(ehic) o emwm, te R

From the equality ¢ =1 it follows that the isotropy group is exactly the
group of integers.

More generally the group ar
natural to denote also by R”) acts transitively on the n-d
=(§'y", in the following way: ifys(tl....,t.)eR", and z=(e
is & point of the n-dimensional torus, define

T,(2)= (e,
Clearly the isotropy group consists of all vectors ¥
ie. the isotropy group of this homogeneous Space 1S

R", Hence (cf. §4.1)

s of R" (which group iis
imensional torus T*
lliv\' e ez"ﬁ)

of all translation

O mnan
with integer components,
is the integral lattice T of

=R
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e a{— Xu-‘;x=6,'p fij:l,-~-1k‘ i<j. “)
=" o

ifold V,, is (embeddable as) @ non-singulae
12 in R™.

Proce. In view of the transitive action of the group 9("} on ¥, i, it s1‘.lﬂices to
establish the non-singularity at any particular point. For convenience we
choose the point x, = (x;;) where x;; =0, i = sk =100 s Thik e
wish to show that at x, the rank of the Jacobian matrix of the system of
equations (1) is largest possible, namely k(k + 1)/2, or, equivalently, that the
tangent space at the point x,, to the surface defined by that system, has
dimension nk — k{k + 1)/2.

To this end let x,, = x, (1) be a curve on the Stiefel i
Hier gﬂ i ¢ Stiefel manifold (as defined by

€21, Lemma. The Stiefel man
surface of dimension nk — k{k + 1)

; lt)xlt) = 3, Limi.. .k
‘[U{O’=6m i=],,,.

1t follows g the tomponents e L3 gR L,
d
fu - “'Xu(l
of the velocit dt =g
Y vector at the e
e iy
dt a‘-‘:| x"")"nlll) ={ +&
= ki ]
mﬂn langen Ypace 4 X 9 "j‘ l""’k-
L vector, I Poing t
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=L k. Since the dimension

‘i.r jemma is proved o this space is clearly nk

kik 4 1y72,

Thus ¥, 4 18 indeed a smooth m
e
group of this homogeneous space, _“L:h.in We now investigate the otropy
and enlarge itlo an orthonormal h"“lr, : ¥ l:rt:lunnrmal k-frame P oo
space. Any orthogonal trnml’urmumn-“l.i;! s :;: the v_vhnk: of Euclidean n.
(relative 10 the above basis for 177) haye the f:l € VeCloms ey, ..., ¢, must
wim

L4

| 0
k " 0
0 | + AeO(n—k),

n—k{ 0 A

whence the isolropy group is isomorphic to O(n, k by o b
with O(n)/O(n = k). (In fact V, , = O(n)/O(n (:, ,l‘ and ¥, , can be identified
The Stiefel manifolds V, , for k < n are also hom
" : L g OREN
group SO(n). From this point of view the isotropy srf):l pe?‘u: !:ap:lmy : '.:::-n t;.:
phic to) SO(n — k), and therefore also

Vo i 2 80(n)/SO(n ~ k).
In particular, we have
V, @00, " Vo iy &s0my =0 iwstt,

() Grassmannian manifolds. The points of the Grassmannian manifold
G, , are by definition the k-dimensional planes passing through the origin of
n-dimensional Euclidean space. The usual action of the group O(n) on R
yields a transitive action of that group on the set of all k-dimensional planes

through 0, ie. on G, ,. To find the {isomomorphism class of the) isotropy
group, choose any k-dimensional planc 7 through 0, and then choose an
the plane n (whence the

orthonormal frame for " with its first k vectors in
will be perpendicular 10 it). In terms of such

remaining n — k, however chosen, : ’ -
a basis an orthogonal matrix fixing  (as & whole) will necessaily have t

form
k  {(A 0). Ae0(k), BeO(n—k)
n-k{\0 B

It follows that

Gy = om0k x O = k)
Oflh. MM Gl.t
Note is an obvious identification
;M G..'{::lmm!;m its very definition Gy 18 nu aun manifold as
il i,
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53 Exercises
and let H be the isotropy group.

space of a Lie group G, t : ‘
difference in the dimensions of G

| Let M be a homogeneous y
{ the manifold M 1s the

Prove that the dimension o

and H
dim M =dim G —dim H.

Compute the dimension of the Grassmannian manifold G
3 Prove the compactness of the manifolds ¥, , and G, -
3 Letm=(my,..., m,) be a partition of the integer n, i.e.
n=m+ootm,  mz0

A collection of linear subs; n e R "1'.““ f
paces m,, T, , . , of the s
passy C i
: A pa is called an 8 1k
) g=0,n, =R
i) =,_, L 3
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g Spaces of Constant Curvature {'i'mmn,,‘ o
3 aces)

compatible with the metric) has id

Tnlic
29 of Part 1)

cally zerg Covariant derivative (see §§2%

)]
covariant derivative of the
ly Bianchi's identities

In any metrized space the com
curvature tensor satisfy certain
Exercise 7, §30.5, Part I). K

Ponents of (he
relations (name

R = R} = const.; Rl R™ — const.
It turns out also that under Ctrtain
condition (1) implies the humogencily of
manifold is “simply connected” (see §17
obtainable from some simply connecte.
space (ie. by identification) under som,
construction it can happen that the disc
in the full isometry group of M, in w
homogeneous; such spaces are someti
“locally symmetric”.

However our approach to symmetric spaces will be via the following
definition.

global conditions on a manifold,
the metric g,,; this is the case if the
below). Any manifold satisfying (1) is
d such manifold M as the quotient
e discrete group of motions. In this
rete group I in question is not central
hich case the space M/I" will not be
mes called “locally homogeneous™ or

6.1.1. Definition. A simply connected manifold M wit!r ametric g, c]eﬁned on
it, is called a symmetric space (or symmetric man!ﬁ:ld) if for every point x of M
there exists an isometry (motion) s,: M — M with the properties that x is an
isolated fixed point of it, and that the induced map on the tang;nl space a: x
reflects (i.e. reverses) every tangent vector at x, i.e. £~ — & Such an isometry
is called a symmetry of M at the point x.

The significance of the requirement in this definition that the manilf_ol:l:
simply cogrllnnectcd will appear below (il-:l §§17, 18). In the p;?f’:;:;:e ?“d -
shall not make use of the properties of sn;tpli “;cot;r;a:::: ;1; .

ili i rties ma ] ;
mrmcsm ml!m;ﬁ?al;tmaﬂg;?has studied the relevant sections of Chapter 4
in §6. 4

6.1.2. Lemma. Every symmetric space satisfies condition (1). oo
Proor i M a &

icular point of the symmetric space & oo
Wmmw:fb;‘m:tptahr:c:omro x. We can clloos:ee ogz-gr;l:}a ‘:ﬂ %
'ﬂﬁbo:syrhood of x such that at x itself we have (

% _
=0, Za=%wm g
on
(Here we are making the (inessential) assumpt
ian.)

ghgll‘hﬁmh
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EXERCISE
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p
a4
_jesic, then we may take as 1 the “affine”
f:d o= 1) parameter yielded in whm:emlecnlhd also “natural” m Chapter
equa

|l
of Part 1) ion for the Bodesics fsce
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K
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62 The Isometry Group of a Manifold
properties of Its Lie Algebra .

Henceforth in this section we shall consider onl ‘
manifolds M (hence satisfying (1)), with me'::c!';:.mu,_ s
isometnes pf M w".l be denoted by G, and the isotropy group by f‘; Ds?th: s
may identify M with the set of left cosets of H in G (ie. M =6/H .
aotation of the preceding section). . , in the

Let y = y(t) be a geodesic on M parametrized by a natural
and write Xo = 7(0). For each appropriate real me: Mnm eamat .
fr.i M~—M by setting P
fr, = S;,‘s,,
where x =7(—T/2) (see Figure 11). This map has the following three
important properties:
{i) fr., moves each point of y through a time-interval T along the geodesic
(as indicated in Figure 11).
W)=yl + T)
{ii) fr,, parallel transports vectors along the geodesic;
i) for any fixed geodesic y, the transformations fy,, with T variable, form a
one-parameter subgroup of the isometry group G:

f1'|+‘r:-‘l=f7t~ raw
-1 ;“Ur.v)rl'

From the last of these properties and §3.1 above, it follows that for each
geodesic y the one-parameter subgroup fr,, of G has the form
fra= exp(TB,).

é e

Figure 11
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wcads Xo 103 point whose dk S o the Riemann curvature tensgp
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Verify!) We deduce from lhltS r‘%lzsgs
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i ::fdptum that A & Lg). Let 7 be any geodesic through X, and denote by j
the image of 7 under the map g,. It then follows, again from the isometric
property of the maps involved, that for small enough & ‘the map Bufr 8
ranslates the points of the geodesic 7 along that geodesic (which of course
slso passes through x). Hence the tangent vector to the one-parameter
subgroup g, fy. &, (with parameter T),is in L,. We now look for this tangent
vector. From the basic facts about Lie algebras described in §3.1 it follows
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3
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Corollary. With G as above
a2k S above, and g w 19 4 11
jinear operator

(direct) its Lie algebra, the
L
. P tion to L is the identi
whose resiric & | entity map |
. and whose r icti
reflection — 1. is u"l.u- algebra automorphism (i.e. als estriction to L)
(The map o is an involution”, i.¢. ot 6. (80 preserves commut,

-1)

is the
ators),

(The converse 18 also true. To each Maticns :
algebra 9. there corresponds a Z,-grading g e z;y::f‘:z;:;hum o of a Lie
of the Lie algebra, where L is the set of clements fixed b lurn'of spaces)
clements which @ negates.) y o and L' the set of

In view of the homogeneity of the manifold A

i i s the local
any point xg 18 determined by a scalar product on the langcns:: metr; .lr:l\.lr:;
point (Hcr; n = dim M.) We now elicit a certain property (familiar fr: Pa
1) which this scalar product must have. m Part
Note first that the tangent space R}, can be identified naturally with the

space L' © g. Let A be any element of L, and consider the one-pa
subgroup g5 = exp(TA). For each T we have the map e

Ad(gr):E— &y,  Eel.
As was shown in the course of proving part (i) of Theorem 3.1.4, we have

&= Ad(gy)(E) =& + T[A, ]+ O(T?),
whence

dir

G == A0 )

In view of the fact that gy is an isometry of M the inner product on L' should
be invariant under Ad(gy), i.c.

Erynrd =<6
whence on differentiating with respect to T at T'=0,and using (5), we obtain
(LA €L + <64 =0. )

This is the condition on the metric (i.e. scalar product) on L! =R}, that we
were seeking. (Cf. the definition of Killing metric in §24.4 of Part L)

6.3. Symmetric Spaces of the First and Second Types

In the preceding subsection we obtained what might be called the “ﬁ:“‘:
model of a symmetric space. In principle all symmetric :‘l::“"‘ b
classified (in the framework of the classification of compact pil:ol A%
present subsection we consider {he most important exam
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plane. eness of the metric on the Libashevekias

(Ag, Ayd = -3

= SO(2) have the

the matrices of the form
¥ the vectors A, + Ay, Ay dtis

EXERCISE
Investigate the general cases §" and ["

64. Lie Groups as Symmetric Spaces

A Lie group Q endowed with a Riemannian metric invariant under left and
right multiplications by group elements, can itself be regarded as a symmetric
space. The isometry group of  has a subgroup isomorphic to Q x Q, whose
action on Q is defined by

|
i
i
!
4
i
i
}

(81,820 98,98 "

The isotropy group of this action is clearly the diagonal subgroup

H ={(, 4)lq € @}, which is isomorphic to Q: clearly H(1) = 1. For each gin

the corresponding symmetry is defined by
Sy xgx .

(Verify that this does indeed define a symmetry.) In particular, s,(x) =x"".

We shall examine in detail the case where Q is a compact connected
subgroup of SO(m), with the Euclidean metric
(A, B) = tr(AB"),

where BT denotes the transpose of the matrix B. (Recall

that a Lie group is compact if and only if it is a closed
0O(m))

M

that it can be shown
subgroup of some

Emm
Show that the scalar product (7) is the Killing metric on SO(m) deteemined by the
Killing form on its Lie algebra (cf. §24.4 of Part I}
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and 2 Bg\slrl.4¥g[5r]=""481)= (A, B,

' )
whence the desired conclusion.

c42. Corollary. The metric (1) restricted 10 any subgroup Q of SO(m) is
impariant A right and left multiplications 4+ 41992-

We call such a metric hi-invariant ot two-sided invariant.

642, Lemma, Every bi-inzariant metric on a simple Lie group is proportional
(with constant proportionality factor) to the Killing metric.

Prooe. Let  be a simple Lie group with bi-invariant metric ¢ , ). The bi-

invariance implies that for all elements A, B, C of i
ol g, = xp(AT), we have of the Lie algebra L of @, and

(Ad(g;)(B), Ad(gr)(C)) = (B, C 8
whence it follows, ; i o 5
%Just as in the derivation of (6) above, that

([4.81.C) +(B,(4,c1y =0, 3
be 1o metricy ;
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Note finally ?.hat, as

4
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Pue: also for semistmp
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s
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Pz:gh of the simple fact
e

6.5. Constructing

We now return 10 B
write

M =G/H
where M is a _given
algebra of the 1s0OLro|
R:, to M at the poir
of the homogeneity
satisfying (6); in wha
from the Killing for

6.5.1. Lemma. The
with respect to the

ProoOF. From Lem:

1t fO“OWs md“y t
that tr(ad 4 ad B

We dcdllce at
mentloned‘ the K
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4 Corollary. Every simple subgrg
ad = " up b
JCHMINg IeETIC - an be isometrically fmhfgd:{;h EBroup S0(m) endoweq with
o meiric proportional to the usual metric on 'l';‘thr ;::;,,,.e §m -1 o ':J::
€ sphere. i

- Corollary. Smrelf'le Ricci tens
" o group) also satisfies (8), (9), ";;Il’:r: (determined by he

where A =const.

Killin .
s that for simple groups, R, T:: .
VRa= g,

Note finally that, as remarked abgye. ;

I : . - € It i :

part 1 that Ry is positive definite for compa;i::;:::eeguqﬂy from §30.3 of

true also for semisimple groups, since cach such group ils-lrlocalgwli’p:- Ts .
¥) a direct

roduct g W G, of mmples, and the sj % .
cach of the simple factors G,. S1En of 4, s casily determined for

§.5. Constructing Symmetric Spaces. Examples

We now return to general symmetric spaces. In the notation of §6.2 abo
write X 7
M=G/H, g=L°+L"' (direct sum of subspaces),
where M is a Fiven symmetric space, G is its isometry group, L° is the Lie
algebra of the isotropy group H, and L' is identifiable with the tangent space
Bz, to M at the point x, (fixed by H, ie. H = Hx,). Recall also that by virtue
of the homogeneity of M, its metric is determined locally by a metric on L'
satisfying (6); in what follows we shall assume the metric on M to be obtained

from the Killing form on g (see below).

65.1. Lemma. The subspaces L° and L' of the Lie algebra g are orthogonal

with respect to the Killing form.

ProoF. From Lemma 6.2.1, it is immediate that forall 4 € 1% Be L' we have
ad A(L%) c L% ad A(L)< L,

ad B(L)c L ad Bl
Itfollows readily (using a basis of g which is the union of bases for L° and L:j]

that tr(ad 4 ad B) =0, as required.
n terms of & basisforgohhekindjust

We deduce at once from this that i
Tentioned, the Killing form on g has the form

29 0) (10)

Lo’md,‘amtbemdlm

'h““‘ﬁl‘amoveﬂheindicaoﬂhwf“
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Killing form of the |

jso docs the form ‘:;';. o
+ &
(9), %0 " j¢ then the form z‘..n will
g s 4 1.7, However, in the
643" e algeb® isimple of the
m oP { rather sem .
mple: u Lemma 6.5.1 (with noy
(s m‘"-lcliuns of the form g{n]
;yc;l A4 say) of the K“hn!
l N
. (1) js positive definite,
: & metrc Ep ¢
fa-:mr\_H is compact :Iﬂ:;‘, 4 L the matrices adhA, ,; e L :
. d AP is positive, and therefore ip
—tr{ad /

C
y =

2
g4y = —[u(adA o+ tr(ad Al }
tria 3

it follows that

1
(A, A)y> (A Ao bt
42 ‘ ic on the symmetric space
Hence for compact H u""“d e c-;ife f;;l:(:]?:;; form on the Lie algebra g,
) the resiriction to L° (namely 25 he Killing form on the Lie algebra of a
s positive definite. (CL the fa:hclc Tiae[ ;I g: bra L° of H) is non-negative.)
mr:;:u; l;; ﬁ:l:,i::rg[-ooi:)l'lslﬂ-ld a symmetric space it fssgnlially suﬁ"l(fesf to
choose 1 suitable subalgebra L° of g on which the restriction of the Killing
form of the enveloping algebra g is non-degenerate; then L' is defined as the
orthogonal complement of L” in g. However the inequality (11) greatly
restncts the choice of L If the Killing form on g is indefinite (type 1I) then
for symmetric spaces with Riemannian metric the subalgebra L° < g must be
such that the restriction of the Killing form to its orthogonal complement is
rfhﬂﬁ:vzu: negative definite, and at the same time L® must be the Lie
pact group, and therefore of a subgroup of SO(m).

Remark A given symmetric ;
— G such & way 1ha1,r:¢u can be realized as a submanifold of the

sl G, Ths ey, esics of M are geodesics also in the
equivaient) wayy "8 canbe obtained in any gpe of the following three
by consiger

-i’(,yz):{!:ch we mean an ‘nﬁ'

1)) such that the map

EXFE equivalenc®
ho¥
a1 fOllOWS 15
w?;:t (As an
of ¥ sition 8
c< g
. S 2n) U(n)

The [ollo“fing :
definite metric). (
have the topolog

(1 so(p, q)/(SO

@ SU(p. 9)/(Ut

(3) Sp(p. q)/(Sp
4 SL(n, R)/SC
(5) SL(n, C)/SI
(6) SO(n, C)/S¢

: We conclude
Signature (4 —
general theory
the equation R

L. Spaces of

0 M
g,
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induced on g 15 the !dcnh!y ma
P on L® and
on L'y M <G the negat;
map on L'} M 15 then the Image under the r:‘:pv: u':: ‘dfm“’
B &)

| XERCTSE

ghow the equivalence of these emheddinp

What follows is a list of the basic examples of connected symmet
i TiC Spaces

ach case the corresponding direct

(1) S0(2n)/U(n)

@ §U{n)/SO(n)

(3) SU(2n)/Sp(n).

@) Spin)/Utn)

(5 Solp+q1,f(SOlp)xSO{qJ)} Crass s aaniiotla Ak

6 SU(p+)/(SU(p) x Ulg)). the projective s 3
(n Splp+ q)/(Sp(p) x Sp(q)). paces and spheres).

The following are examples of symmetric spaces of type II (with positive-
definite metric). (The simply-connected ones among such spaces turn out to
have the topology of Euclidean space R")

(1) SO(p, q)/(SO(p) x 50(q)).  (For q=1 this is the Lobachevsky
space [*)

() SU(p,g)/(U(p) x SU(g)).  (For q=1 this is the unit ball in C”,
as a complex manifold; if also p= 1,
this manifold is identifiable with
L2 = SU(L, 1)/U(1))

() Sp(p, @)/(Sp(p) = Splq)).

(4) SLin, R)/SO(n).

(5) SL{n, C)/SU(n).

(6) 50(n, C)/SO(n, R).

We conclude with a list of symmetric spaces of din?clll!:ion 4 with m:ct:c‘::
signature (+ — — —). (These spaces are of potentia importance for
general theory of relativity since (by Corollary 6.4.5) the metric ga satisfies

the equation R, — Agas =0 (see §374 of Part I).

I Spaces of constant curvature with isotropy group H = so(1,3):

(1) Minkowski space R}, 3.
{2) The de Sitter space
homeomorphic to R x S Here
operator on the space of
() The de Sitter space S = §
105" x R?, and its “universal covering
§18) is homeomorphic to R*. Here the curvatu

- 4)/50(1, 3), nole that 'S. ‘is
K m i : wmorRintheldmhty

pivectors A’(R*: R=1.

- this is homorphc
02,3/ ?0(1. 34 S_'p-.E(Z. w500, ) e
re tensor R= 1.
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§30.1 of Part 1) given by the 1-forms

¢ the tetrad (s€€
In terms of the tetra ‘ % s
p=dx q:dr,fﬁdx,.. x = dX3, y
p=dx;
the curvature (ensor 15 constant, of the form
R=—4[costpr x)®(pa x)+sint(p A @ 1

Remarks. 1. A simply connected symmetric space is uniquely determined by
its curvature tensgr}ai a point. To see this let R: A%(V)— A%(V) be the
curvature tensor, and denote by b the Lie algebra of skew-symmetric linear
operators on the space V generated by those operators of the form R(x, y),
%,y V. (Then b is the Lie algebra of the isotropy group (previously denoted

by L)) Let g denote the Lie algebra V + b, where the commutator operation
on this direct sum of spaces is defined by

[l @) (5, b)) = (av — bu, [, b] + R(u, ).

Then in terms of the pair
8. b the structu o . D
satucally reproduced on the symmetric ; :):;UE Tﬁ','}?' symmetric space is
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v that 1 the complex case (e 8 White G =
o and posilive SQUATE terms in the e
i L = § dim g Find the subalgehey ;o

e SLin, Cyor 50 fumbery

3 SOin, C)) the
mplex Lie algebra @ are equal, .
of the Lie algebra a of the ym

1 Show that for symmetric spaces of type I with i
' ny

s M= G/H, where H is a maxima) e mettic one always

ha: - e com
particular cases SLin, R)/SO(n), SLin, CUSU‘I:? subgroup of G. Investigate the
ghow that a simply-connected, symmetri

: ropology of Euclidean R". : fic space of type 11 always has the

For the next few exercises, note that, as for Lie

also for symmetric spaces do we have groups (see §30.3 of Part ), so

(R MK, Pl = <L D, EnlreRy=L!
h s L),

« show that for spaces of type I, the Ricci tensor R, is positi
- live definite, and the
«sectional curvature (RE ME ) (where &, n s a8 1S posil ’ :
pon-negative. 7 5pan a parallelogram of unit area) is
& Show that for spaces of type II the sectional curvature is non-positi
from this that a simply-connected, symmetric space of type 11 is rp::hwﬂm' Da:ﬁ
same as R* (assuming the metric Riemannian).

7 Decide which of the 7 symmetric spaces of type 1 and 6 spaces of type 11 listed
above have non-vanishing sectional curvature. Investigate the spaces S, CP*, HP"
of type 1, and the spaces L, SU(n, 1)/U(n), SLin, R)/SO(n), SL{n, C)/SU(n) of type
IL

§ Prove that in dimensions n=2, 3 the only simply-connected, symmelric spaces
with positive-definite metric are L, S", R". (Hint. Show that the isotropy group
H = G must be SO(n) (n=2,3), and thence deduce (for n = 3) the constancy of all
sectional curvatures.)

9. Provethat uimply—eonnecledsymnmricspmeithuniﬁmth=G, x - X Gy
{where the G, are simple) has the form

M =(G,/Hy) x - x (G/H\),

“ilhlhemﬂricdecomposinguldifeﬂprodwdnlnuhonthm
M, =G /H, each ofwhichispmpordouﬂtolhekﬂhummh“‘w” of
the corresponding Lie algebra g = Lf + L!-

§7. Vector Bundles on a Manifold

1. Constructions Involving Tangent Vectors

From any n-dimensional .
i follows. The

manifold, called the tangent bundle L{M) of M a5 a4

nanifold (M) are defined to be the pairs (X £) where x ranges OVl
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7.LL Propesition. The tangent pundle L(M) is a smooth, oriented 2n-di-
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Note by way of an example that the tangent bundle on a region U of
Fuchidean space R" is diffcomorphic to the direct product U x R".

If the mamifold M comes with a Riemannian metric, then we can delineate
i LiM) a submanifold, the unit tangent bundle L,(M), consisting of those
En-mrm ~) with |¢] = 1. The dimension of L, is 2n — 1. (It is defined in L(M)
by the single non-singular equation f(,§) =g, 688 = 1)
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often meets with the manifolg L,(M) whose points are the pairy
""f, where T ranges over the straighy Jines through the origin, in the
(%t nt space R® to M at the point x e A

(ange ny n-dimensional manifol,
““‘:,,an frame bundle E = E(A)
,_m':' and t=({, ..., &) any ord
X€! 4 at x.

:f \Tlsl:r?cmcd then £ = E(M) s defin

required to be in the orientation ¢
rare
M.

¢ M is a Riemannian manifold, then Eo = Eq(M) is defined as in (&) with
IL:’fr:rnts © restricted to being orthogonal.
t

i) aving as points the PaIrs (x, 1) with
ered basis (i.c. frame) for the tangent

ed as in (i) except that the frames
i) lass determining the orientation of

()

xamples of such constructions will be considered in Chapter 6.
e :j fine the cotangent bundle L*(M) on a manifold M. The points of
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1 _— -
(2. Pog) = (x:(x., o X

The Jacobian matrix is then

& )
50 () ()
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LiM)— L*(M), defined by

. )E%),
(%, &%) (%, BaglX 2% 191 of Part I}
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W;;e (;ke‘;:mmﬂw (hat: The mifw“mqu
Le. =V con ’wﬂ

(Recall that in Part I we defined a symplectic

(skew-symmetric) 2-form.)
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» Consider the diag ; » X)|x € N} of M; this is a i
= anifestly identifiable with N. The tangent vectors to A subma.mm“.‘ of M
., o oo (G, 0% hence a tangent vector v 0 A at any point will have
asy the = (S, m) will be perpendicular to A

pr,_-,clscly if
0= OMEmM> = Evny

1 tors { to N. since this i ible i :
% for all tangent vec 5 15 possible if and only if & = —
o it follows that the vectors normal to the diagonal A=N ha\s're]ufe [or:-;

+=(¢,—&). Hence we conclude that:

Y the vy = n(A) = L(N).
(c) Let vy(N) be the normal bundle on the submanifold N of the

Riemannian manifold M. We define a map h, the geodesic map from vy,(N) to
M as follows. Let (x, v) be any point of vy,(N) and let y(t) be the geodesic of M

:O: emanating from x with initial velocity vector v; thus §{0) = v. Then define h by
s the hix, v) = y(1).
72.1. Lemma. The Jacobian of the map h is non-zero at every point of vu(N) of
the form (x, 0).
1on- ProoF. We give the proof only for the case when M is the space R" with the

usual Euclidean metric, and N is a hypersurface in R given (locally) by
parametric equations X =xi(l, ..., u" Y, i=1.m Then as local clo-
ordinates for the points (x,V)€ ve(N) we may take lh;n;':‘;?'::
(u',...,u""1, 1), where x = x(u), v= tn(u); here n(u) is the unit ::desicmap -
surface N at the point x(u). In terms of these co-ordinates the g

is clearly given by

h(u!, ..., @" 0= x(u) + tn(u).

Hence its partial derivatives are as follows:

i dh 3
"ii = E'x‘ + l-—E;' » 5; n
o o v a
acobian matrix (Oh/du, ah/ g

On putting 1 = 0 we obtain the non-singular J
=(0x/du, n), whence the lemma.




1. Examples of Minllqu'

\ 1s compact Then the £eodey;,

- Supp ’
123 {Hj‘"- regi” s = (N I NinM
—ap b =1 S of N in}
'.lmul'h\"“i UN 2 3 G

—LL be map h is 3 diffeomorphism o
; g Icf“r:? [1 N) of the form ¢-\-’.h0!- Sl;nce Ni
¢ any point ol .,';hb(‘urho{’ds cover Ihe:ll set ‘N._D]
v many of th mmv Sany nﬂghbqur 00ds containg
on of these fimiteh nd on this neighbourhood h j
s (N f (N.0) 3 0

hic) image of vi,(N)
: .. the (diffeomoTP ; M

:hc..nroCJfIlagDm[ x in U,(N) there is a (locally
emanating fru_m_f:rc .10 N. We shall call the 1_=ngth of this
s¢) “perpendicular geodesic ¥ D) to the submanifold & 4

istance from X €
x I:cl i:is:::lt) the function p(x, N) depends smoothly on the
i 0y ptre

-m.s x of the region U(N) of M.

U.(N)be, as i

723, Theorem. If M is a compact, two-sided hypersurface in Euclidean R" (see
2 IL. then M is g-nm by a single non-singular equation f(x)=0.

[7)

paoos. Let oit) be a smooth function with graph something like that shown
in Figure 12. Define a function f: R" —» R by:

ﬂ”:jis if x¢U (M),
lol£plx, M)) if xeUM),

#here [/,(M) i the region of M appearing in the corollary, and where the plus

ne of the two disjoint connected regions
S sign if x is in the other. (It is here that we
M in B*) Then M is defined in R" by the

o

ugn is taken if x lies in a particular one
comprising P" — M, and the minu:
are using the two-sidedness of
equation fix)=(),

: B 3

Figure 15

APT ER 2' '
,ouﬂdauoﬂ'
C Oncemmg
Typical ST

The present chap!
smooth manifolds
the development ¢
in succeeding cha
wishes, acquaint |
without thereby s
material.

The subject n
“partitions of ur
various “existen:
evident): the exis
the rigorous ve:
smooth embedd
the approximab
and the definitic
On a manifold 1

€ second
Making precise
'S part will
cnnsftructions, s
merjt cl(,ser sty



