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expositions of the elements of topology it is custom

ary for homology 1 be
en a fundamental role. Since Poincaré, v o

who laid the foundations of topo-
gy, homology theory has been regarded as the appropnate primary basis

for an introduction to the methods of algebraic topology. From homotopy
theory, on the other hand, only the fundamental group and cuvcnng--,pa;-c
theory have traditionally been included among the basic initial concepts
Essentially all elementary classical textbooks of topology (the best of which
s, in the opinion of the present authors, Seifert and Threlfall's A Textbook of
lopalogy) begin with the homology theory of one or another class of com-
plexes. Only at a later stage (and then still from a homological point of view)
dofibre-space theory and the general problem of classifying homotopy classes
' maps (homotopy theory) come in for consideration. However, methods
developed in investigating the topology of differentiable manifolds, and inten-
ively elaborated from the 1930s onwards (by Whitney and others), now
permit a wholesale reorganization of the standard exposition of the funda-
mentals of modern topology. In this new approach, which resembles more
that of classical analysis, these fundamentals turn out to consist primarily of
the elementary theory of smooth manifolds,t homotopy theory h.nc:l s
bese, and smooth l—lhl:l‘ spaces. Furthermore, over [hF' decade of Ehlc “Ijtl l!::.
became clear that exactly this complex of topological ideas and I‘IIL'I hods _
~able yus areas of modern physics
Proving to be fundamentally applicable in various : fed as absolutely
It was for these reasons that the present authors regarded as abs \

9 to Giauss, Riemann and
Foidently the beginning ideas of topology, which can be traced back to G

i« der wever, al the e of Ciauss amd
: L i wider Ho L al the time of ( d
AT, actually arose historically speaking, in this ¢ R :

compleves, was ahle 1o provide

- y al basis forat
WANN, & corre spondingly organized conceplua

aal
* 4 Foincare wha, in creating the homology theory of simplicia

' o
ile dilleren precise foundation lot algebraw lop logy

Saft




methods are based exclusively on the formal algebraic properties of the
muﬂhmmﬁqmmuﬂhmnynmlﬁr
explicit geometric prototypes whence they derive their raison détre. In the
final chapter of the book the methods of algebraic topology are applied to the
investigation of decp properties of characteristic classes and smooth structures
on manifilds. 1t is the intention of the authors that the present monograph
provide a path for the reader giving access to the contemporary topological
literature.

A large contribution 10 the final version of this book was made by the
editor, Victor Matveevich Bukhshtaber. Under his guidance several sections
were rewritten, and many of the proofs improved upon. We thank him for
carrying out this very considerable task. i

5

Translator's acknowledgements. Thanks are due to G. C. Burns and Abe
Shenitzer for much encouragement, 1o several of my colleagues A
Stan Kochman) for technical help, and to Eadie Henry for her advice, superb
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jnthis section we shall prove the important topological result usually referred
1o 35 “Bott periodicity”. For the sake of simplicity we shall, for the most Fy
concentrale our attention on the unitary Broups. 3llh0ugh "U"hn[lt:ml Bott
periodicity” 18 established along the same general lines as “unitary Bott
periodicity”, there are certain rather substantial technical difficulties to over-
ome in the former case. (We shall nonetheless outline a proof of “orthogonal
periodicity” in the final subsection (§25.3).)

251, The Theorem on Unitary Periodicity

as a result on the

We shall prove this theorem in its “classical” form, namely _
thout considering

periodicity of the homotopy groups of the unitary groups, wi
Its role as a “periodic” theorem for vector bundles.

: S il i hold
5.1, Theorem (On Unitary Periodicity). The following isomorphisms ho

between the homotopy groups of the special unitary group:
for 1515 2m

= lim - UM the dlrer_r
ndard embeddings Uim) €

1, (SUQm)) = mpy,(SUQ2M))

fh Jollows that for the “stable” unitary group u
mit of the unitary groups U(m) with respect o the st
™ 4 Il we h‘u.y

uls
o (U) = m () for 12
Wheneo :
or 12
1, () =0, Taall)= 7z [



Higher-Dimensional Variational Problems

Unitary Bott Periodicity and

o we shall prove the mmportant topological
- . cal result wsgally

" F“r:muicdmm,}‘cmk‘m,rﬁx
___.rae our attention on the unitary groups: although =
g ’ orthogonal Bott

oy = established along the same general lines as “umstary Bott
- there are certain rather substantial techmical difficulties to over-
rmet case. { We shall nonctheless outhne 2 proof of “orthogosal
1 the final subsection (§253))

The Theorem on Unitary Peniodicty

% saall prove this theorem in its “classical” form, namely asa result on the
perwdscaty of the homotopy groups of the unitary mm‘m
role 25 a “periodic™ theorem for vector bundles.

51 Theorem (On Unitary Periodicity). The following isomorphises hold

¥iween the homotopy groups of the special unitary groups:

for 1isdm

: - direct

" follows thag for the “stable” umitary group U =lm_..¢u‘.l. lh‘_
Ulm)

4 of the unitary groups U(m) with respect 10 the standard embeddings U

" 4 1}, we hape

%,_,(SU(2m)) = =;.,(SU2m))

L |lU’=”a—i‘U| Jor izh

fﬂ' “20.

l'q,n”

L) =0, RanlU)=E
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. .cial unitary group SU(2m) of even i
Consider the specia
"y

Lic group. and denote up

Q= USURm), Loy —13,),

.1 1(3 - identity linear transformation (j
are f30 € 5L {2m) is the 1 : :
:1:1'[:-\ n space ol pll,‘\.'I:W!.‘it:“v“‘I!)ﬂih paths in the space Sumlh]*’ :
e 1O ., and by fin WMM
8 Q* = QUSURMY Ly —15,)
of all continuous paths in SU(2Zm) from I,,, 1o

PR : -1
2.4 that the inclusion £ - Q% is a homotnpy 2 “‘hll
y concerned with the subspace q%]‘t

Q= USUEm), Ly, — I3m)

of Q consisting of all minimal geqdesics 7 {i_.e. geodesics of least Ly
all piec:wa:.e—smoolh paths) joining the points T A T

the invariant metric on SU(2m) determined by the Killing form {WX r)h
Re tr{X F"), X, Y € su(2m), on the Lie algebra su(2m) (see Part 14243;@;

[44] for general conditions under which such minimal geodesics exist )

the full space ¢
from Lemma 2
shall be particular

25.2. Lemma. The space £ is homeomorphic to the complex Grassmann
manifold G, . 1. the manifold whose points are the m-dimensional
planes through the origin in complex 2m-dimensional space C*™ (see Part ||
§5.2). h

Proor. By Theorem 30.3.7 of Part I, in the Lie group SU(2m) the geodesics
with respect to the above-mentioned Killing metric are precisely the one-
parameter subgroups (and their translates (i.e. multiples) by elements of
SU(2m)). Hence in order to characterize the geodesics in SU(2m) joining the
points I, and —I,,, it suffices to describe all one-parameter subgioups
emanating from the identity I,,, of SU(2m) and reaching the point —I,.. By
Part I, Theorem 24.3.1 (and the definition of an invariant metric on a Lie group
given in Part 1, §24.4), the one-parameter subgroups y(f) passing through the
identity I,,, have the form y(1) = exp(1X) for some skew-Hermitian matrix X
with zero trace (ie. element of the Lie algebra su(2m); see Part I, §14.1). Sin=
the parameter can always be chosen to vary from O to | along the geodesic
arc from I, to —1I,,,, we infer the conditions y(0) = I, (as required). an¢
7(1) = exp X = —1,,., from which we can ascertain X. To this end, recall t
well-known result (a consequence of the classical process for bringing a matr*
::l; s Jordan canonical form, or, if you like, of an orthagoum e
Expleting the operator Ad applid to the unitary case) o the efect 2 ¥ 5
aonysgate, by means of a matrix in SU(2m), to a diagonal matrix, i€
ment go € SU(2m) such that -1 : . ﬁ

ﬂ'quo = X(, with XQ d‘m

2 {he least length
- .] for all i = I
; .._{;\-.ndmg matric
jagonal. The upshot
sU(m) joining th
)= expltX) where




Ya
.
( tan
\ ; SUbalgeby,
¥ trans| n
" Mation Ay i)
geodesic vip Y Mty
L the g " o "mn My
© Oy A I
- “XpiX
0
\ exj Xga')
0 |
o L
& ve, I 1

» 2m, that g

£ ' ki, =0

thus completely described the ol

remains 1o pick out those of least length, < :"“‘f|lvll!

 of the metric on SUQ2m) in terms of - :—: V. Since, i Vi ab "
| map sends the line segment {1 X0 hing fory

Stg)

melr wallv onto the geodesic arc

. tan
MO = exprx Eent space
orarcis equal to that of the line segment in st 2m) N]. the length of this
» Killing form on su(2m) is given by TOW, 88 noted above,
(A, B>

Re tr(ARY),
that the \cr\g!ll of the latter line segment is
5 [

JEX X \lf-\-\"”‘i\_ti\‘l"
Y =l

Hence the least length of a geodesic from I, to

S Lim s 1,/ 2m, attained when
+iforalli=1, ..., 2m. Since k, + + K3 = 0, it follows that the

corresponding matrices X o must have the same number of i's as ( —i)'s on the

onal. The upshot of our argument is, therefore, that the minimal geodesics
i SU{2m) joining the points I,,, and —[,,, are precisely those of the form
f 'r\pi.:.\ ) where X is conjugate in SU(2m) to the matrix

¢ e
m ! i
=X i o "( g - :i...)

£.X = 0X 0! for some ge SU(2m). sndence between the space
‘¢ have thus established a one-to-one L-nrrcﬁl.:; the conjugacy class of ‘:‘

Lol all minimal geodesics from I3, 10 - Ly and 1y clear that in fact ths

Malrix X, (see (1)) in SU(2m), and it 8 mm';:v‘ufmjuzac

e ; 3 S hni i since the €

“espondence is a homeomorphism. Since |

5 : . ¢l space : CiXe) %

;I “M) 15 in turn homeomorphic 0 th?f ‘32:’:1 and 5inee ‘k':gud: that
A . 2 v v GO

9 18 the centralizer of Xo in SUM: finally <€

1 on),
") % Um)) with the obvious interpretatt
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ich (as mdm-led in Pat 1, S5
wh mmh

2m.m

tobe {

the subspace

\ntersection of SUQm) withits L

of the space (= )ddm u :
P The first asserti

desics (1), established in the

,-o.lﬂm’@

putting it Emdﬁ'
md

ﬂ!li?‘n} of su(bd &

U‘l\-‘: lhc
|D1€nvhanges “[0) w‘g
awhole (€ §1(19)

pintof -

athat the system (4

Weare inierest:d in
W= sin /e o
"2 multipleg of
:ih“ the form £
o
oy, Mishes o



ol Periodicity Wi Mgy PHimension, :
T 4
\ulmll\lll.l‘ |'|-“|
; ferm ol the curvature by ;
il (Rl
: RIX, VX (=X, ¥
kdl) o
| | LN W'
(alloW from the symime try relation “I”““” ; iz
| RIX. NZ, W) = Caiz. i
X, ¥y
part 1 ¢ arollary 3036 or Theorem 10 5 |
e .n-ll\llh.llb"" 05 x
II A8 | A walf Wy
K(Y) W) w CY, Kyiwyy
nay the cefore choose an orthonormg) basis ¢
3 YO ey for
b o “M) such (hy
nere the Hi are the eigenvalues of K If we e ey !
;_m by p.lr-nllpl transport, then an arbitrary veetor hrlll i) o rhd
U ressed unigquely 1n the form A0l along ¥ €an be
1pre .
L

vie) = 3. oi(t)er),

i the Jacobi differential equation takes the form of the system (s 121
s e §21 ()

TR
r 4 2‘ (R(}, e))y, e, 0, lwityk
1

di J= 14)

Gince there is an isometry (“symmetry”) of the Lie group SU(2m) which
iterchanges 7(0) with any particular point y(r) and preserves the geodesic ¢
.4 whole (see §1 (19) above, or Part 11, §6.4), it follows that (3) holds at every
point ol y
K .rlll["'"” = pyeqlt),

w that the system (4) becomes

d’v

,n*‘ FAy=0, =Lk
Weare interested in solutions of this system vanishing at 1 = 0.1, > u.:‘:ch:
= ¢ sin /p,t for some constant ¢, whence the zeros “ri”.?" n:cn thid
eger multiples of 1 n/\/h. If i, = 0, then vill) = et ‘am I Mdmimll?
t46) has the form ¢, sinh \/[“IL!; hence il 4 = () then U'“]. L] 81(::‘:':: seodellc
#1001 vanishes only at 1 = 0. We conclude that the F::lclt; by the posive
’.::thlllljllﬂillc to the initial point y(0). ar¢ delerl‘i qu(2m), given bY
Tnvalies i, of the linear transformation Ky! su(Im) =+ T
Ky(Y) = 411X, Y2 XD 5
i the open Inter

(0,1

”,'"'P”'I! it the integer multiples of 1 = rrf\/.“l
"X a%in (2) it 15 easy 1o show that

-y
(X, Y] = nth = koo ¥ -

T e L







pott Periodicity and Highe,.
ary B

Dimgy, RUETTH on
5 1 Vari, a1
"olery,

yma. The inc lusion of the
o -

g Le

280

piT
$pace gy %
manifold ¢

- ssmAnnian i

e (Gras.

the

of rm'nim“f ;
i Imm) in e

), induces an isomor phisp, hery, een rﬁr‘('nrnw 0, = ﬂlst”li;“n

¥ i ,.\,,N.»n\ . "‘l(.md’r'“i 2m, c.'r:,:dm_g ‘lumurup.\ q‘r,"'ll‘
(M) : nI,I(SU[Em”‘ ) OWS they

> 120
Theorem 21.3 the action l“unctiunal E on
H,; points the geodesic arcs juining /i
is ‘n[.c.nhl critical points of index 0 (1he Minimg| geo a‘ftdmg
s the - ‘hi i . Ubspg
= orphic t0 Gim,m, While the index of all other Efitical pojnyg is at })-me
eom( tollows via Thenrcm 225 that QASU(Q2m), Gy iy eta:t
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€sics) form
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J Im, W conclu

Q) =~ n(GE,, )

35 claimed.

Lemma. There is an isomorphism
; - '
26. Ty (Um) = 1(Ginm)  fOr 1<i<im
i-1

¥ exact sequence of the
A in Part I1, §24.3(c), from the homolopy exa

PROOF. ﬂOlCd in Part 5 i\ ro ;

[):1] r;i :ibralion U(m + 1) = S?™*! with fibre U{m)

slanaa

s iy % [Slmvll o
_.;zﬁ‘l *'W—cr rxj-_lU{mban_LU[m + !)—-nj | -
. (¢ m

ollow at the inclusion i m) — U(m + 1)ind cesamsanmrphlsm
5|tld]i}lh L[ ) )ﬂ‘:
d ' P ¢ U(!?i' =W Uim+ 1) for ]=s 2m
- =1 1

s - + i Since
i U(m + 1)is onto).

d also that the homomorphism i,: x,,, U(m) i

land also

the maps

(U]
U
Um+1)—m, 1l isomor-
5 ,U[m’ e . se groups are all 1
: lusions are all isomorphisms, t:::’u p«gonhe unitary gﬂ:ﬁ&
nduced by the inclu j — 1)st “stable homotopy & the fibre bundle with the
phicto z,_, (U), the (j — topy exact sequence of t space U(2m)/Um){
T e
‘Pace U(2m), fibre e I, §5.2(d)):
“omplex Stiefel manifold™; cf. Part I §2 )/U(m)
my;
o UGm) 5 7, U (2m) - m (UG 8
4
i j s zm.
it loilawr.lhal 2= for J ton
2(U2m)/U(m) =0 ene of the fibrd
C : he homotopy exact sedt
Onsidering. finally, the ho

U
x
G — umum
U2m)/U(m) = Gim.m

)2 gy )+
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by the formula

: o ﬁf,-.(w]}
(0.2, )} = fyaa(8"") = {[-ﬂf;-l(ﬂ" e

1« with the isomorphisT

In fact, i d coincides with the 2 socia
L the map [ f;_, ]+ [fj+1150 define creby [f;-1]is 25500

:’:ur{n?,y pcriOdiCi{Y ’given b; (10): The first step-:I' he next Step is achicwed

407) with the §J Iready been not id-points of
b e §/ of (15), has alre etof m
Y Meang of the embedding of Gg_.._ in SU(2m) as the




mnqlwvm.”
’-':..Mh*"l‘. Aty
e an V. whesl 55 0

et M PrARTL .
Pavr 11, Covoliary 1111w emeciated with $P°F
Mﬂpﬂ'n‘ﬁm :

"’""""‘""“""Ml,..:g-, ;
s of the Rty ".-”"m er
(10013 gruem By the exghicis formada [, o3 =1 f,uy

i3 defimed by
Syor- ¥
with giy, . f) as m (134

Thas, 1o repeat somewhat, the
from 3 vmaal, geomersic pows o
the following two steps: _‘

Step 1. Sarting with an arbitrary sph
spherond by means of the boundary
(on rather s inverse, here it is in fac
 of one bigher dimension in the
tion of the group SU(Im) with its.
subspaces of the space of all
?ﬁm;;mhdyaﬁ. i
10 10 13 (106 Lemma 25.3), one.
obtained in Siep 1, with the spherc

o :"a "”""‘,’z




¥ and Highe, Dimeny,

fal v "rimny, "l

LT
Ating & generator of o lSU ) e

P is in fact the complex analogye 0%k v Of the (req-, ™ myp, 1,
praned in the theory of “¢ hifforg rnlgrh',‘\ - 'Iualuy Tap
yocufTing gonal group (cl. [§], where the ”"'”""'fph':\"l” rc'"“tnl.t, -
w "'”wlj'-l.ih"l to the structure of Certain () Mo |ln :l Mthogo "
adicity l“mjmh. this \|]hs(‘llli\ll h)‘ T‘"'Vlillng . f; :dr}rk_

we ‘Imu" for the above pajrs of Values py, » g, % + 2|II(M“ of
]U_-.J.\_-»."‘-‘ another explicit formuly for the '“'m”'!‘hlkm fotass, 1

‘”".“\.ml‘l'"mg still further the ge

ficity

Ometric pigy,
odr .d as follows: Let
jelined

)
. Unltilry
ire Ih“‘”‘le o per;
b

F: gt + GL(N, ( ), g: §m-1

= GL(M. C),
continuous maps. charding 5=t
ay (WO

and §m-1 5 o
b d { way in R" and R™ respectively, we ma arly exteng Py
sandar _”‘m maps of R” and B™ (1o the Trespective general liney, P
\mogene o
h;nr- then defines a map
g [*g9 = w: R**"\ [0} ~ GL(2ZMN, ),
by setting

o e, -’n@gf,'r'l]

(f*g)x, y) = Iy ®g*() e Il
| f f(x) and gly), and

* *(y) are the conjugate transposes of
where [*(x) ;‘:13;:;10, 0). The restriction of this map to the S‘land?:‘d unit
- G-: 1 <— é@;‘" then yields a map §"*=-1 _, GL(EMN',(’LI Ta [I'I;g:l:
sphere S 7 x'- §' = GL(1, C) = C\{0} to the ‘;?1‘1 clr;ii‘az.o[ =%
e th; m;::)ﬁnés 5k 41 to be the restriction to 57*! <
izl = |, one then S
map

k
as---ea: R*2\ {0} —» GL(2%, C).

A s , where f5, ., is as
I not difficult to verify directly that a3, .; = f14

115 now

defined above (see (1 7) et seqq.).

: -Dimensional
252. Unitary Periodicity via the Two-D
Calculus of Variations

o on
10 subsection is based
iven i receding su
The Proof of unitary periodicity given in the pi

jonal
jon functiof
ied he action hat
lus of variations appl wo[up. It turns out ¢
One-dimensional calculus

unitary g7 naturally by
e e e
Somorphism of unitary periodicity “m-m)city. ot P'w'h
€ring instead an appropriate 2-dim nitary period dimension of |

. ical” roach 1o u ich the ¢ the

above, “classical”, app in each of ¥ The fisct tha
Out in 1wo quite disti:_;cl sleps;l increases by 1.
'Y groups under consideratio



W4 1 Cnitcal Points of Smoutly -
breaks up in this way into two parts (the roquired o
Jdimension being achieved by means of two g g
patural consequence of the method used, "““much":.h
the one-dimensional calculus of variations of the action
tionals on paths, L.e. maps of the one-dimensional diw.qphl ph..
now recapitulate the details of that method, in order 1o diygn. Ee; S
appropriate 2-dimensional una!:;gue: Thus we take “tb&:’-‘h":
[0, 1], with boundary D' = 5" (the zero-dimensional . “M
the points 0, 1), and now denote by T1% the space “‘(Smum","ﬁh“
all continuous maps f of D' to SU(2m) satisfying fly, = rhivs 1 "
{1y = T2m}s 1.6 CVETY f sends the end-points 0, | of pt for ﬂr%
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r both functionals are the geodesic arcs from [, 10 =
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wwse the value of the Dirichlet functional to change.

Before stating the theorem we are leading up to, W€
:;1i|r.|ry facts

mention the following

! there 15 a (natural) isomorphism
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25.8. Theorem (Fomenko). Let 113, Tl be the spaces of - l
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defined above, and let W be the subspace of 1, consisting
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Jor j<2m,
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equivalent). 4
The composite of the isomorphism i;, with the isomorphism B, of (23) coincides
with the isomorphism of unitary periodicity (see (10)):

By o iy: uj(UIm)) = n“,(SUQm)]. j<2m. 24

(Thus by considering the set W of absolute minimum points of the 2-dimensional
Dirichlet functional, the isomorphism of unitary periodicity can be achieved in
a single step (involving an increase of 2 in the dimension of the homaotopy groups),
instead of the two steps required in the proof using the ional func-
tionals of action and length.)

(i) the inclusion i W
iy: m(U(m)) = =, (M%)
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whose equator, defined by f# = 0, coincides with the circle 86 d(lﬂmw
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group G = [ @ ¢ p e U2m), G = Ulm), and Ad,
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great 2-spheres 3% and 5 (therefore totally gec
certainly m SU(2m)) whose intersection m“
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dimensional plane through the origin of R*™*
one another by means of a linear transformation
two planes. Since the smallest subgroup of sum) -
phic copy G, of SU(2) obtained from (25) by letting § u
consistent with [al® + |B? = 1, it can be deduced that

G; containing 5 is likewise an isomorphic copy of SU(2). :
6., Gy, the circle S} is the image of 2 maximal torus T* -
maximal connected commutative Lie subgroup), and §;
maximal torus T27 7' SU(2m). Letting ag, a: Z
maps with images Gz. G,, extending fo, f resp
theory, in particular as it pert
representations ag, & are equi
that z = Ad, o a,. Restricting to D? = §U|
whence it follows (via the proof of Lemma 259 and
i")that f€ i'U{m). This completes the proof of the le
of Theorem 25.3. e

Wﬁmbnmanmg
path [0, 1] SU(2m) is automatically 2 g
mz-dnmomlwnmg minimal
..ﬂﬂd:lmpD’—»SU{bn]Mﬁ
wﬂummiﬁm ). I
only totally geodesic discs in SU(2m) with |
more precisely, if f € T1, is a critical point of
totally geodesic in SU(2m), then f € W.

" ary 644

S8
sersection solp)
gersection can be 1
o Part 11,56, for t
wasely of those el
2 one-lo-0ne COITe:
We now take p
Lilér) there exist
i malrices J, .
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g, = &3 T 0, n, ~ 7. s 1€t o,
s=q
D
" My
pall in the present subsection sketch o f
“‘m,.nl‘l"'\m\ in (27) may however it € Proof of (26)

(he 15¢

Bleaneg from
jard

yroof of the isomorphism of orthog
s O %
1al Morse theory and breaks up into ci;lldgl
1 ste

Pap Irllly' m"mt of
4) The

‘[.""
nsiof g ;

which the 5[.|:.1||.||d proofl of the iﬁl'mnrph' Ps (analg
Jed above splits up naturally ingo 'S of unjgy,

: g two sy Y period;
. below, by using the 8-dimensiona] eps). Hnwcvcr. 85 we -':;Illlyl
al

-ate caleulyg &
pdicd b - g PR S of variar
:‘ the Dirichlet fllllt-“‘;‘:‘;l|”"“ A certain space of R-dimc;'f.‘a“"m 45 applied
( > 4 alls. 1.e. dicce i Sy
r-dimensional balls, ie. discs, that j Was natural nal bajlg (rather
0 ¢

an the = Rt 5 2

[:”u‘ll of unitary pcrlmlglly) the isomorphism of srthe onsider ip 1he
t‘m - 1,,5(0) may be achieved (with some sacrifice of r‘,gnugr'i)?al Periodicity
3 N a single step,

" proceeding much as in fhf.‘ unitary case, we co Eucl:
# of real p X p matrices with the usual Euclidap scal uclidean space
. of matrices is given by the bilinear form A" product, which in
e s 4 ey P4, B) = tt(ABT) The
s0(p) i then a sn_muih Riemannian submanifold of the standargd group
' c R of radius /. centre the origin, with the {‘wo~sideda:nysp-]mc
Killing metric induced on it from the Euclidean metric on B (cf, Pa:::"ﬁl
Corollary 6.4.4). The Lie algebra so(p) of the group S0(p) is also e1.'nbcd ded
in B”', as the subspace of matrices X satisfying X" = — X We denote the
intersection so(p) ~ SO(p) by €,(p). (Note incidentally that if p is even this
intersection can be identified with the compact symmetric space O(p)/U(p/2)
(see Part I1, §6, for the definition of symmetric space).) Clearly Q,(p) consists
precisely of those elements g of SO(p) satisfying the equation g* = —1I, ie. is
in one-to-one correspondence with the set of “complex structures” on B,
We now take p in the form p = 16r; it can be shown (see [44]) that in
0,(16r) there exist eight anti-commuting complex structures, ie. there are
aght matrices J,, ..., Jy in Q, (16r) satisfying
e
Il ollows that the J,, as position vectors of points in SOl 4o poSWE

ofthogonal (with respect to the Euclidean metric on R(1”), and "::;;;::
eether with the identity matrix I form an orthonormal set. Hence

Y B =1
$=lxe S0(16r)|x = a®l + a'Jy + -+ abJy, (a'F + +(“1) 1 I: a
) S = 1,0¥
84 crogs.section of the sphere 5% < RO of dimcnsml'l o —t:;ﬁ.;,% is a totally
"nsional plane through the origin of R *” _Coﬂ?g'(’:;' o §*. Clearly
Esic submanifold of 5% and therefore certainly of

c?
58 nso(16r) = S8 N9, (161 = :
-,qualo

Jime
way 1

l.\puuﬂ

EE—

nsider the

Where 7 (" of S5 defined bF
r NT - %
© 85 is the 7-dimensional “great sphere” ©f
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gain totally geodesic (in 5% and therefi
he “equator” ore ST Cn%
J\esﬁi(:(x"J +a'J "0 the
s aleben -
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a =03
other hand, t
5o =
_ 0, the boundary of the tota
: all i
hemisphere” of 55, given gy iy

DE = [x e 55|a® 2 0}.

defined by 4@ ?

pg < S§. the “upper Mensi
“Nslonal yy,

Let D¥ denote the standard 8-dimensional ball (i
d nal ball

8), let 87 = @D®, let i D® —’D‘;“‘::ﬂﬂdard Psition
1 the standarg b._m the

Euclidean space R
from the ball D® to the upper hemisphere of
e s ; the sphere $® (i )
in thd,l]d-:ﬂ, Is be the standard isometric bijectionsid(ms};?dm lectioy -\“‘.p w‘.‘“ o
p:lrzsqf,) c ,;E; cw. Q[lbri and coinciding on i(S7) with astae::fym! i lllhon II ‘ﬂnd\ "““.m
ot | — & - 10 -0
4 ! g fo=i" s g o l'dﬁm llom o 8 .11‘“‘\1\_\1 L_‘“n theé It
b =1i"9o1l D® — S0(167). Ty ,.‘ﬂu‘u.“h]l‘
Denote by I13 (in notation remini agrr L :8
i ] iniscent of th : Ly 00 et P’
space of all ¢ . at used G el :
I'rl:3 ; ;'lg tih;osr::t]gu:::ga?]s [: D® — 50(16r) satisl’yi:;l}'r Unitary case) iy, ir Lll‘i ' s0
(see the preccdingpsub all ek P D® - S0(16r) in“tr:j" i and b p " icom™”
lParamelcr-indepcndeniﬂ:sl?jm On the function space Il class Hips) W was notes
logue of the area functi A lr,"fms“’l'laI-w.)lumc I'unctiom:] g ider o ohere So
unctional utilized in the uni ALS] (the -||;Li.tf‘5 5
nitary °“°)d=ﬁmd hr ana- i that Jo ! (]
¢ cled g
A a PP hogonal 10 the
L] L» det(g;) dv, "_“"5" i
(see Part I, §18.2) wh { ik gl
R ? - ere (g,) 18 th . 1 By means o i
D : e met AL
irichlet functional [sce(]gl}u ric on SO(16r) = R and the st the space L2y
o (lr) (se€ | 441)
With each poit

D[f.]-_—J. [_'ui v{]‘ |8
o) | dV=
oo | B 'L. [§ n; guyfyf]‘ dv, wving the standa
$x) = {a®

which, as before, d
 depends on th -
show that for all e co-ordinatizati
ell ion of D*. It i :
s we have A[ /] < D[ f]. Finally lle:'snot Lo Singe th
: ) ju' e veclors
Wllows that §%(x)

ﬂa: ".r'[ ;J s ‘;5(30(16?)} 'm
fough the orig|
\ - OTIg)

be the standard i
. i
Z omorphism constructed analogously to f3, (see (23) et seqq) is
ﬂ“t:-z Theorem (Fomenko seqq. 0(16r) = g1
as above, and | ). Let SO(16r) be embedded i “Nisphere of g
DA i SOUE b o apsoes (1} and Mg ) in the Euclideat ) o
consisting of all tho eﬂ'.'ed lfl'sa as above. ;Jen TOI i “Mwuu
B st se points (i.e. maps) f ¢ [1 ote by W the subspace of Ty Havip,
s absolute minimum value € [; at which the Dirichlet fi L thig
on T, The following statements Wi '

() Subs, e W meomor hl(‘ o orth, ﬂl E
i) the ubspa
C is hol P ic t the (4

ﬁl] the inclusi
51 i
<2 W = My = 113 induces isomorphisms
ig:m(0 1 X
iwhence it foly « O > n(M13)  for = i Doy ;
ws that the (r — 2).4; e A "'“'I‘Mn'
imensional skeletons d‘mwﬂ{rl -“"au:h"u“e ‘:I
: e, €0
4 E 3und L1
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=y OMorphiy
X ndord) isomorphism of orthogongi Periodi, ”":!h of IEJ;“”WW
iy: mAO(r)) = l'.,.a.f.\'()("sr” i
! Epin
| now indicate the proof of this theorem (y
we shal " f 7.(U(2m)) entails the
phty @ 2

connec
s p? — U(2m) with prescribed [
gs maps & (a consequence of the the
> o)) = £2

Tve f
!cd_nc«,s of the g s lh:,.“ st g5
Slriction 1o zp2 1of
Orem) implies that n:
appear belgy that { :
" ade up of two connected components, one CONtaineq i“hc Space W
rr!j -omponents of [TF; the connected COmponents of ﬂimar: i':‘t:;
ble(in the limit as r — o0) onto the respectiye Rl
Dic 'ompﬁﬂ:
hev € sent proof (like the more standard Ones—see, ¢ g [45]) invohves
e ;‘Tﬁ = S0(16r) of all complex structures (je.
pset €25 < -

solutions of J2 =
commute with the fixed complex structy
anti-cor

res Jpi 0
was noted above, and hence with every point of the 6-du

. mensional
here S5 = S; defined in 57 by the equation 4° = () (see above). It
sgandard 5P e gJ)B_ that €2, is contained in the vector subspace of Rt16
aes thl[oa the subspacc spanncd by the vectors E J,, ..., J,, that
oo, +J,). and, consequently, that D§ 1, is the one-point space
s = | = ;fa largely computational algebraic argument it can be shown
:e n;:;:e 0, has two connected components, and in fact is diffeomorphic
that the s 8’
10 0ir) fsee [44]). i st
?\Ir“ly::ci plunt x € Q, we associate the lotal!i geodesic 8-sphere 5
ith * . i
waving the standard 7-sphere Sg as equator, given by

ontain

e—1Ir
P(x) = [a®] + a'J, + - + @'y + a’x|@’F + - +la }" gltunf it
T bsystem in & -
Smce the vectors I, Jy, ..., J;, x form an ?nh;ﬂgfr'!’n:;??-diumﬁw planc
bllows that §%(x) is the cross-section of S Cl a totally geodesic submanifold
firough the origin, and is therefore certainly denote by D*(x) the VpPet
o 50(16r) = R For each x €y we then
Iemisphere of $8(x) ey o B
D*(x) = {a e §*x)la = a’l +  +¢@ ’ ¢ 0, a toally geodesic
i
Having in this way associated with ea:ht g(i);:'(xﬁsg'
Himensional disc (i.e. ball) D?(x) such tha o
. ‘ >
=53« Ml :
D¥(x,) n D*(x3) = S0 ok
; canonia] em::::din] su i
” " ow in a position to construct 8 o, whose
F"t “alogue of the embedding i U(m’he unique W:; above (=
01D € D let gp(x): D® — ok 518 -
~ boun ary is the standard map o © !
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2115 Lemma, The embedding 1" 01r) -+ 11§ indu
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coinciding with the usal “isomer phisms of ‘.
proor (sketch only) Let [ & = 0Olr) be &
mdrhc}lbwmymﬂm 3
family of maps ey D* — DP(x) (see (30))
.ms'»cn.umc:omza,um :
mmmwywmwmm
20" = 8. and the D*(x) intersect pairwise
maps wix) yiekds a map
’2’”4’- U bad B
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lﬂ”hl”’,'uhbum -

Mﬁﬁmmd.- :
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et e
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|

ET

b= )1
v | S A lying o
Fo: & * U D'(y) ¢ Q ¥ in
xo Fasinny e 1]
'.l',\ - f,
sriy |u'-l4lhh\|'|ﬂ| using 2 5
 he proPe ymorphis & Morse theory) g,
il juces an isomorphism Al the ¢
N ne ‘”“p"nde
Nce

Bl =m0,

g this procedure, one defines further maps
ath S Vs

_ Fg, where n particular F, maps §i+8 =+ To laking

L o . l 5 i
- ified (we omit the details) that 00y = SO(16r), 1y cat;n nt:\:
verifiec
oe J L}‘ QP O i
xe v}ll&'rn Lt Ly @ ¥alx)]
G is 4 32)), and that F, essentiall Wity
ore § 15 28 10 (,. . ally coincides wi
‘h:_-Llhc composite correspondence ith the map ¢ of(3)

S Py Fy

pduces a0 isomorphism

m00r) = n;,4SO(16r),  j<r-2,
(the isomorphism of orthogonal periodicity as usually constructed), it follows

sat the correspondence f— F induces the same isomorphism. Since i’ =
,+ ¢ the lemma now follows from the definition of the map F in terms of w.

a

To complete the proof of Theorem 25.14 it remains to show that i'(O(r)) =
W Asin the unitary case we verify this in two steps.

K16, Lemma. The map i’ O(r) — T1§ given by (31) above, satisfies PO =
W where W consists of all those functionals in Tly at which the Dirichlet
lunctional D has its least value on Tlg.

This is established by an argument analogous to that - ?nhﬁz?:cgt
Lewma 25,11, exploiting the inequality ALf1 = BL/JtoE=er R
latfor each g € O(r) the disc i'(g) = D"(@(g)) i & hemiSphere
kection of the sphere §¢ i1 en’ by a p!anc through the origin.

25. I £ 0 =W anak)ﬂo‘l’
”' mma, We have i" (l)) ” g [ the
O

p

I::» Initially the argument proceeds as in e Pmo[.u values taken P¥
Donpy 12 Let [ € W, ic. suppose DL/1 S feast I terms of st
. mand et . p% _, p8 = SO(16r) be a8 hermore, 10
“’miﬂales i DJ‘]?[ » ea:y lg see that A[fo] = D[fﬂ}- Furt
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L

o the ounddary conditions on admissible

p*' = 8’ be mapped canomoally onto 8 m
jeast taken by { on Iy Mence we can infer, vig

« D[h], that s
(k] =PI DL = ALS) = ALY

It follows that fID"). like ,f.,lﬂ'l. must be a
cross-section of 54 R (of course having 5] as it

) s i
. Now let x be a vector in fID'lo_rthopm 10 the ¢
1t follows from the above description of f(D*) that

Y = (a1 + a0+ + 6Tl F EAKEE

since f(D*) is a oentnl—;ﬂa:: crsc:;u-nctmjoqh of §*
antipodal points of its boundary 5. U a w _
rt:).il,]u:_f.l ¢ < 1, of SO(16r) (actually of §%), such that y(0)
— 1 (namely half the circle obtained by sectioning
plane spanned by the vectors [ and x). Now any
7(0) = 1, has the form (1) = exp (rtA) for some A
fairly direct matrix computation (see [44]) it can be
and y is minimal, then A is a complex structure:

(1) = (cos a)l + (sin:

whence (1) (= A) is a complex structure. Since
infer that x is a complex structure, i.e. x € €,

L

7

A
a
&

(x + Jy) € f(D") = SO(16r)
whence

ﬁ(z + J.)eSO(I‘&]nso{l&):'-
ie §0c+ J)* = — 1. Hence xJ, + Jyx =
SID®) = D*(x) (see (29)), so that f € i'(O(r
proof of the lemma and with it our sketch ¢

 From the proof of orthogonal pe
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4-fold loop space Q062 Sp, and that the
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¢ 1ot UU(2Zm). In the present s ¥ SClion of i
sit holds also (not howeye : -
i iy
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wsition. The two connected com
w18 Propo porients of the s
s it “NE Spdce W

of the conjugating action om [}, of 00 ol 7104 -
3 4
G Jokdy = 50(16r) (G = Oy
) =
. 4 1 show that given am ]
pecor. We need 1 ’ 1at g "h"r'f"m"*'hﬁ“&alhgl R
oy 29y, where x € €1, is in the same connected co, desic balls 1411
granes - Component of £, a4 J
. is a0 clement g € G such that gxg™ = I, since then g 3

gD*(x)g " = D(Jy) = D},

st the corresponding map o(x): D* — DP(x) (see (30)) is obtained from
40 f,- D* — D = S0(16r), by conjugating by g. Since each g € G has the
om0 = Jy 7, ¥ € S1y, the equation gxg ' = Jg is equivalent 1o yxy* = J,
1y J, (since y ' ¥)

siow in [44] the alorementioned diffeomorphism €}, = Ofr) is construcied
by ading two r-dimensional subspaces X, X, of R'* with the property that
ces of the form J, y, y € £y, act a8 (distinct) orthogonal transforma-
foms X, = X, and in fact account for all such transformations. Tt follows
wadily that G, as defined in (34), is indeed a group, since it is identifiable with
e group of all orthogonal self-transformations of X, for X ;). The cquation
1, for which we seek a solution y € 2, is equivalent 10

Uy pdox ') Mgy = =Dl the
o iiaont W0
¥hence we see that the existence of such 2 solution i g%
“Hstence of 4 solution z € Olr) of the equation
zAz = B of
L ded mw
{, “uch (fixed) pair A, B of elements in the same solution (we 13 the onts
"r- Yince every such equation does i "“‘f‘;ﬂ o
flication of this on the reader), the l”"wmﬂ 10 umitary and
In « IW“" p
,4*,:,' Wimmary, the idea underlying the abov¥e ’-Wnl.ﬁ“"w.
onal periodicity (and borne out by the 2
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is should arise via the same mechanism (namej, 3
B higy,
o the

these resul

dimensional calculus of varations apphied to the D!richh”
particular oule ome llt'l‘ff“l"‘g only on the space on which lh:%.‘l
considered —the space of maps of 2-dimensional discs in the s t .
of 8-dimensional discs in the orthogonal case. ““Irye“. W
I'he reader will have observed that, this uniform approach ; ang
oofs of both unitary and orthogonal periodicity uhimaatw
guments of L1nt-dimenﬁit>na| Morse theory. | on iy
considerable nterest i a direct uniform proof (using the Diﬁéh:;““” o
could be found which avoided any appeal to the Morse theor ; .
dimensional functionals of action and length. Such a proof woylgi-
feasible if one could establish directly the contractibility of the uld in gy
skeleton of I, (or the (r — 2)-skeleton of Ty in the Uﬂhogi’:;?"mnal
the space i'(U(m)) (resp- i'(0(r))) of points where the Diﬁclﬂ:i?’c’ e
has its least value. It is precisely a contractibility result of thig |:
the classical (L.e. one-dimensional) Morse theory, of the path g kind i,
Q(SU(2m); Lz —1,,,) which allows one to obtain the crucial isg:: H,},
71 (Gimm) = T [(IT,). However, the analogous result for the p
dimensional calculus of variations applied to the Dirichlet functional is ..
available, a lack essentially due to the typical sort of difficulty which a i
higher-dimensional problems of the “Plateau” type, whereby the m
dimensional functional in question may be degenerate on certain 9=T-50I
n the extremal submanifolds.

our pr
more standard ar

positive measure contained i
ol the particles
i ¥ . i linked DY the
§26. Morse Theory and Certain Motions in cigurations are

the Planar n-Body Problem Wenow turn to
moblem of celesti:

In this section we shall show how Morse theory may be applied 1o the analysi al, positive num!
of certain motions in the many-body problem of celestial mechanics, ie. the rather point-parti
problem of describing the motions of n objects acting on each other by means pane. We m;r: 1
of mutual (gravitational) forces. It is well known that to a first apwmiﬂ’“"' ¢ centre of s
the pl_anets of our solar system move in a plane, the so-called “plane of (¢ 1 the p) e
ecliptic”. Furthermore, to a large degree of accuracy the centre of mass of the ??dwnatssane b
whole system may be identified with the sun’s position, and the motion o i Sumpi o bx;
system may be assumed to be governed by the Newtonian gravitation! 'f’.aiiaz];j‘?- b

polentigl _qf classical mechanics. The motion is then determined in ﬂ‘m'l Uepacar ! m;:
way by initial conditions, namely the positions and velocities of the gravitat"® Wem) :

masses (considered as point-particles) at some chosen initial instant of " Plane) of t
As is also well known, the general solution of the resulting system of difersnt!

equations is exceedingly complex: for instance, b wd
ns is € plex: by the classical resuits g
and Poincaré, there are no single-valued analytic integrals of the system (€ iy,
;:(;;;Iesls_wns in the position variables and their derivatives which are angld! ‘lnq],: phase s
imes) other than the “classical” ones (the integrals of enere¥: "d“nathM x
esilr =
e
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1ge solution can be given; see Py
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omp™ heless proved poss Tl 8325 - ever, in he
1y has nevertnes ©C Possible 1o delinegye :
3 g cubclasses of solutions ud""‘!tlng e L Mong -
tut® pelass is that of all so-called “figid-bog alively o Hiong .
jbela o S
axch “m obtained under the addition y solutigy P
o

al assy v 1
g SSum : >
nrevolve together about the Sun, at the samlon that 4 the = p‘"'tulal
me 3 :

o the ecliptic Thus, in this special cage, the rula(ivngulaf‘ip:edr::::zu*‘h:
a o i,m-h;mgc_d g wh"‘"“ SYSIEm revolyeg 1: POSitiong of thcg‘?‘ii

B i consre of moss. 0 {he literature sych per: ike A (planar) o

; “circular orbits” (with Periodic solution 'Bid bogy

" prred t0 85 € ar orhi) Saremmﬂimﬁ
Joleity)- Tt 15 & remarkable fact that Ption rg the same apg,1ar
n‘“h gelniicas 2 muny-hgqy problem, reduces mothsuch Planar “rigid-
: ial poins bty flm_cno:-;_ Possibly Morse, op :dfscrimion of the
and that e msu—h]ng mp.“l“glcal information about the n::“-?‘h Mmanifold,

puve et (5 b bc obtainable from knowledm ol;‘i Wh:t_h_wa
ponts,can then be used - draw important qualitative ini B¢ of the critjca)

'Wmcmc structure of the “cn'cuiar" solutions

2 For instance, the fO“meg question is of

fe
under investi;:‘i::_abom -
consids i e
«stem of point-masses, what planar canfiguralinnsc;??:]il;::;r::'a?wm £
patible with some -‘rigid-body_" solution? (It is ntuitively clear that [:,{;-?::l
wvery arrangement of the particles will quality for some planar “rigid-body"
wlution) Clearly the admissible configurations will be determined by the
masses of the n particles of the system. (In the particular case where all but
one of the particles have the same mass, it turns out that these configurations !
are linked by the action of a certain discrete group of symmetries.) Such :
configurations are sometimes called “relative equilibria™ of the system. ]

g
Wenow turn to the precise formulation of the prol_)lem‘ The planar n-body F
problem of celestial mechanics is determined essentially by a sequence ofn :
real, positive numbers m,, ..., m,, Tepresenting the masses of the n b::::;' 1
rather point-particles, situated at n points of the (2—_d|r.nensmnali)l_i w“: b
plane. We may clearly suppose that the origin O coincides at all times :

he centre of mass of the system of particles. The position of '?ﬁm:g
o the plane will then be denoted, in terms of the standard il' ol
rdinates, by (x;, y,), or by the complex co-ordinate z"-:kfi:mfgdiﬂdy the
asumption that the origin is the centre of mass we ;u system is a certain
®ation Y'*_ 2 = 0. The “configuration space of t ~ M2 (orcomplex
"ubspace (see bciu’wl contained in the linear subspace :" e

erplanc) of the Fuclidean space R2" = C" given %

. 0} ]
2n mI =Y
M2 = (2,0 2 ER jz':l ‘ ; he cotangent
. J o old of) th i
o he“phase space” of the system is (a certain s that since ¢
hund|c Ts 8

( 1)
nf® TM M x M (the direct square o Fey oo part 1317
"ales are Euclidean, T and T* may be



