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Abstract

Unlike many other investigations on this topic, the present one considers the non-linear single-layer perceptron (SLP) as a process in w
the weights of the perceptron are increasing, and the cost function of the sum of squares is changing gradually. During the backpropags
training, the decision boundary of of SLP becomes identical or close to that of seven statistical classifiers: (1) the Euclidean distal
classifier, (2) the regularized linear discriminant analysis, (3) the standard Fisher linear discriminant function, (4) the Fisher linear d
criminant function with a pseudoinverse covariance matrix, (5) the generalized Fisher discriminant function, (6) the minimum empirical err
classifier, and (7) the maximum margin classifier. In order to obtain a wider range of classifiers, five new complexity-control techniques :
proposed: target value control, moving of the learning data centre into the origin of coordinates, zero weight initialization, use of
additional negative weight decay term called “anti-regularization”, and use of an exponentially increasing learning step. Which particul
type of classifier will be obtained depends on the data, the cost function to be minimized, the optimization technique and its parameters,
the stopping criteria© 1998 Elsevier Science Ltd. All rights reserved.

Keywords:Single-layer perceptron; Statistical classification; Generalization error; Initialization; Overtraining; Dimensionality; Complexity;
Sample size; Scissors effect

1. Introduction statistical classification rule have been proposed in the lit-
erature on statistical pattern recognition and discriminant
The single-layer perceptron (SLP) is the key elementary analysis (DA). We mention below only those that are similar
component in multilayer feedforward networks used to to the perceptron design algorithm, and can be useful as a
solve real-world problems. The behaviour of a single source of practical results and interesting ideas for further
neurone serves as the simplest prototype model for studyinginvestigations. The first known classification rule is the stan-
the characteristics of more general non-linear models suchdard linear discriminant function (DF) proposed by Fisher in
as multilayer perceptrons. Despite the fact that the SLP has1936 (Fisher, 1936). Anderson (1951) has shown that it can
been studied for quite a few years, there are still some phe-be obtained from optimal statistical decision function the-
nomena which remain to be studied. These are, for example,ory. There we assume multivariate Gaussian classes with a
the generalization error, dynamics of learning, regulariza- common covariance matrix (GCCM), and insert maximum
tion terms and overtraining. It is reasonable to study these likelihood sample estimates instead of unknown parameters
problems first by using the very simple model of the single- into the model. Koford and Groner (1966) have shown that
layer perceptron. The non-linear SLP has much in common when we have the same number of learning vectors from
with a variety of conventional linear classification algo- both competing classes, the adaline linear classifier of
rithms. Therefore it is important to follow parallels between Widrow and Hoff (1960) is identical to the Fisher linear
statistical and neural net approaches, to find out which resultrule. The Fisher rule requires a sample-based covariance
from statistics can be used in neural net analysis. matrix to be inverted. In the case of a small learning set
More than two hundred algorithms for designing and large dimensionality, the situation becomes proble-
matic. One of the solutions is to use a pseudoinverse of
the sample covariance matrix (Schurmann, 1977; Malinovs-
mm for reprints should be sent tar®as Raudys. E-mail: kij! 1979; Duin, 1995)' A Variety of structures of the
raudys@ktl.mii.It. covariance matrix, including a diagonal, a block diagonal,
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tree-type dependence models and others, have been proaction. We stop and analyse the perceptron at different
posed to overcome this kind of difficulty (see, e.g., review moments of the learning process. We regard the SLP
in Raudys, 1991). One of the most successful solutions is theclassifier as developing during the training process. It can
addition of a small positive constant to diagonal elements of adapt to the complexity of the pattern recognition problem.
the covariance matrix. This technique was first used in On the way between the starting point and the minimum of
regression (Hoerl and Kennard, 1970) and later in discrimi- the cost function, the weights of the perceptron are increas-
nant analysis (Di Pillo, 1979; see also Friedman, 1989; ing. The actual slope of the activation function changes
McLachlan, 1992) under the title of *“regularized gradually. Therefore, the decision boundary of the SLP
discriminant analysis”. can become identical or close to that of seven classifiers,

The main objective in classifier design is to obtain a analysed in the statistical pattern recognition and discrimi-
classifier that results in the minimum number of misclassi- nant analysis. The objective of this article is to show how a
fication errors. Anderson and Bahadur (1962) obtained the significant number of results from standard multivariate
optimal linear DF to classify two multivariate Gaussian statistical analysis can be used in the generalization error
populations with different covariance matrices. Their result analysis of simple artificial neural nets.
was generalized to a more general class of distribution den- The article is split into two parts. In Part I, we show that
sities by Patterson and Mattson (1966). When one does notthe non-linear SLP is not a single classifier but a process. In
have the analytical form of distribution densities, one needs Part 1l, we analyse the small learning-set properties of
to use the learning-set data and minimize the empirical several well-known statistical classifiers that can be
(learning-set) error rate. Amari (1967) suggested using adetected in the non-liner SLP training process. We analyse
soft limiting “arctangent” function whose closeness to the former and new results from a fresh, unique point of
the threshold function can be controlled by a parameter. view, using the terminology popular in the statistical
Do-Tu and Installe (1978) suggested to change this mechanics approach, and demonstrate how theoretical
parameter gradually. Then the pattern error function (a con- results concerned with statistical classifiers can be used
tribution of an individual learning-set vector to the cost) is for purposeful control of SLP complexity.
smooth at the beginning, but later on approaches the Part | of the article is organized as follows. In Section 2,
threshold function, and finally minimizes the number of we enumerate the main results of the whole article. In
empirical errors. A similar approach was used by Section 3, we present five parametric statistical classifiers
Pietrantonio and Jurs (1972). A variety of other algorithms based on the class distribution densities, and two non-
are based on the use of a sequential random search (Wolfparametric classifiers based on the decision rule approach.
1966), the Kiefer—Wolfowitz stochastic approximation In Section 4 we show that in the backpropagation (BP)
(Yau and Schumpert, 1968), linear programming (Ibaraki training of the non-linear SLP classifier, the weights gradu-
and Muroga, 1970), the algebraic method (Warmack and ally increase, and the cost function changes gradually. In
Gonzales, 1973), linear transformations of the coordinate Section 5 we show analytically that in adaptive SLP train-
system (Miyake, 1979) and heuristic ideas (Vapnik and ing, one can obtain decision boundaries for seven different
Chervonenkis, 1974). Ad hoc principles are used to over- statistical classifiers. Section 6 contains experimental
come numerical difficulties. illustrations, and Section 7 a discussion.

When zero empirical classification error is obtained, the
resulting discriminant function is no longer unique. Some
additional criteria are introduced which favour an increase 2. Main results
in the distance between the discriminant hyperplane and the
learning-set vectors nearest to it. Examples are the tolerance  We analyse the non-linear SLP that has inputs
function (Babu and Chen, 1971) and the “margin” — the X;X,...,X, and one output calculated according to the
Euclidean distance of the nearest learning-set observationgollowing equation
from the separating hyperplane [Glucksman, 1966; Vapnik
and Chervonenkis, 1974 (generalized portrait); Duin, 1995
(small learning sample classifier); Boser et al., 1992 wherew,w = (W;,W,,...,.W,)" are weights of the discrimi-
(maximal margin classifier); Cortes and Vapnik, 1995 nant function and(g) is a non-linear activation (transfer)

output=0(W’X + W) (1)

(support vector machine)]. function. To simplify analytical formulae in our analysis we
Typically, in the study of the generalization error, the use the “tanh” function
single-layer perceptron is analysed as a separate SPeC'aJJ(g)ztanr(g): (eg_efg)/<eg+e7g) %)

specimen of the classification algorithm. Most often the

activation function (or the pattern error function) is assumed However, in simulation experiments, we used software with
to be the linear or the threshold function; sometimes it is the closely relategigmoid activation functiono(g) = 1/
assumed to be a soft limiting ont contrast with other (1+exp(— 9)) = (tanh@?2) + 1)/2.

investigations, the present paper does not consider the non- The SLP actually performs the classification of a vector
linear SLP as a single classifieWe investigate the SLP in X = (X3,X3,...,Xp)" into one of two classese; andw,. Itis, in
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fact, a modification of the prediction (regression) problem
for the “0-1" loss function. We consider the case where
perceptron weights are found in an iterative training proce-
dure, where the following cost of the sum of squares

Ni

2 . .
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cost= €))

is minimized. In the above formult:ﬂ) is a desired output (a
target) forxj('), thejth learning-set observation vector from
theith classN; is the number of learning vectors # and
N, is the number of learning vectors itp. In regression the

targets are continuous values. In classification, for the acti-

vation function (2), we usually ust{el) =1 andtj(z) = —1.
We call these valuegmiting ones. Another choice iﬁ(l)

0.8 andt® = — 0.8. In simulations with the sigmoid func-
tion, we use!) = 0 andt® = 1 (limiting values), o™ =

0.1 and® = 0.9 (recommended by Rumelhart et al., 1986).

We mainly analyse the standard total gradient delta learning

rule (backpropagation (BP)), where the weight vector is
adapted according to the rule

acost

w =Wqpn —n——
(t+1) ®—"m W

(4)

with 5 called a learning step.
In our analysis we have established the following facts.

1. When starting training from zero or small weights, the

4.
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t,= —t;NJ/N, (for t, = — t; this means we have an
equal number of training samples from both pattern
classes),

we start training from zero weightjyg = 0, W) = 0,

and

we use total gradient traininggnditionskE),then, after

the first iteration, we have the Euclidean distance (the
nearest means) classifier. In subsequent iterations we get
the regularized DA, and move further towards the stan-
dard Fisher DF. We can obtain the Fisher DF when we
have close non-limiting target values, efg.= — t, =

0.1. Ifn= N+ N, < p, we are approaching the Fisher
DF with a pseudoinversion of the covariance matrix.

Target values are, probably, the most important factor
determining the character of the learning curve. Starting
and final values of the learning step are very important
too. Other factors that affect the result are: the data, its
separability and its prior transformations; the regulariza-
tion or anti-regularization procedure used; the local
minima and flat area of the cost function in a multivariate
weight space; and, of course, the number of iterations. In
principle, we can obtain seven statistical classifiers in
SLP training.

5. In the thermodynamic limit, for two GCCM classes, the

maghnitudes of the weights are increasing up to certain
values. These values depend on the separability of the
learning-set vectors and on the target values: for well-

separated learning sets with zero empirical errors and Ep(NEDC) ~ @{ _& 1

limiting target values, the magnitudes can increase with-
out unbound, and for badly separated and/or non-limit
targets the final weights are smaller.

. The statistical properties of the SLP classifier depend on EP(NRDA) ~®

the cost function which, in turn, depends on the

average generalization error of the Euclidean distance
classifier (EDC), the standard (F) and regularized
(RDA) Fisher linear DF are expressed by the equations
(Raudys, 1967; 1972; Raudys and Skurikhina, 1994):

}, =

2.\/T;

of 01
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magnitudes of the weights. At the start the weights are where

small, and the activation function acts as a linear one.
Then we obtain the adaline cost function which leads to

the standard Fisher linear DF. With an increase in the ®{a} =

magnitudes of the weights, the activation function begins
to act as a non-linear one, and reduces contributions of
learning-set observation vectors distant from the discri-
minant hyperplane. Then we get a rule similar to the
generalized Fisher classifier which is robust to outliers
(i.e., atypical observations). When the weights are very
large, the contributions of all learning-set observation
vectors become close to eitherl or —1. In that case,
we have a classifier close to that which minimizes
empirical (training) error. If the empirical error is zero,
we can obtain the maximal margin classifier for the
limiting target values.

. The classifier obtained depends on the number of itera-

tions. If: 6

« the centre of the data/2(x® +x@), is moved to the
Zero point,

a

J (2m) "o T exp{ —t%/(20°) } dt, N=N; =N,

—

6*, 6 ands, are certain functions of the parameters of the
GCCM data model that determine the separability of the
pattern classes; the teffp = 1+ (2p/(6°N)) arises from

an inexact sample estimation of mean vectors of the
classes; the terniy = 1 4+ (p/(2N — p)) arises from

an inexact sample estimation of a covariance mabix;
is a regularization constant, the tefiis also a function

of parameters of the GCCM model. This term is trying
to reduce the negative influence ©f. The first two
asymptotic formulae are rather exact fore> 10, while
the formula for the regularized DA is valid only for very
small\.

. In general, the GCCM class model is “unfaithful” for

EDC. Therefore we have a terfij, = 1+ (2p"/(5"*N)),
with 1 < p’ < « (Raudys, 1967). The terfj, indicates
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all, there is a difference between the cost function

surfaces, obtained from the learning-set data, and that
obtained from the test-set data (general population).
The greater the difference, the greater the overtraining
effect that can be expected. Another factor is the change
in type of statistical classifier that occurs with an

increase in the number of iterations. One of these clas-
sifiers appears to be the best one in the finite learning-
set size situation. Overtraining can occur when the

that the small-sample properties of this classifier are
highly affected by true distribution densities of the
classes. This conclusion is also valid for othgara-
metric classifiers: in “unfaithful” cases, the generaliza-
tion of parametric statistical classifiers depends on the
data; in certain cases, the parametric classifiers can be
extremely sensitive to the learning-set size.

7. In the multivariate spherical Gaussian case, the average
generalization error of the pseudo Fisher linear DF is

given by weights are small and the activation function acts line-
arly. Then we move from the EDC towards the RDA

and the Fisher classifier. Overtraining can also happen

EP(NPH ~d) _ 8+/1/p 1 (6) later, when the weights are large and the activation
2 function acts non-linearly. Then we move from the

2 2 35° . o i i .
(1+7 )Tu +v 4—Np Fisher classifier towards the generalized Fisher classi-
fier, or from the ZEE classifier towards the maximal
wherer = N; + N, — 2 is the rank of the sample margin classifier.
covariance matrixS; y = /Vy/Eq; Eq and Vy are the 12 For the GCCM model with several eigenvalues of the
mean and variance ofd/andd is an arbitrary eigen- covariance matrix close to zero, the small-sample prop-

value ofSchosen at random. The average generalization
error has a peaking behaviour: with an increase in the
learning-set sizd\, it first decreases, reaches the mini-

mum and then begins increasing. The minimum error is

erties of the Euclidean distance, the zero empirical error
and the non-linear SLP classifiers with non-limiting

targets are determined by the intrinsic dimensionality
of the data. This conclusion does not apply to the

obtained forlN = p/4 (n = p/2) and the maximum error standard Eisher linear DF.
(0.5 for equiprobable classes) is obtained No& p/2. 13. A purposeful, conscious control of the SLP classifier
8. In the multivariate spherical Gaussian case, an increase complexity—obtained by determining optimal values
in the average generalization error of the zero empirical of targets, the learning step and its change in the train-
error (ZEE) classifier trained by the Gibbs algorithm is ing process, the number of iterations, addition or sub-
proportional to /N)°, where parameteS < 1. It traction of the regularization term—all help to reduce
increases withb and the ratioN/p, and approaches 1 the generalization error. Correct initialization of
asymptotically as sample si2¢increases. The general- weights and transformations that simplify the data
Ization error Is: structure are also useful. In certain experiments with
artificial data, we have achieved the generalization
error reduction up to 10 times or more.

MEPCED =~ ¢{ — 8 !

2 1.8-6/5
\/1+ (L6+ 0.186)(%)

3. Seven statistical classifiers
(7)
This classifier can perform well evenrif< p. Forn > 3.1 The optimal Bayes decision rule for classifying two
p, the Fisher classifier performs better. The correct prior Multivariate Gaussian classes that differ in mean vegters
information supplied in the form of the prior distribution ~ @nd2, but share a common covariance makiis given by
Gprior(W) Of the weights reduces the generalization error the following discriminant function (see, e.g., Fukunaga,
dramatically. 1990; McLachlan, 1992):
9. Theoretical and experimental analysis of the Gibbs algo-
rithm in the case of spherical Gaussian data shows that ang(x) = (
increase in the margin width decreases the generalization
error averaged over a variety of classification problems The classification is performed according to the sign of
and learning sets. For one particular problem and one giscriminant function (DF). After inserting sample mean
|eaming Set, simulations with the SLP exhibit peaking VectorS,)_((l) and )?(2), and the samp|e covariance matfx
behaviour. instead of unknowg, p, andX into the above formula, one
10. The simulations with the spherical Gaussian and gptains the plug-in sample DF
GCCM data confirm that, depending on the learning
level, the small-sample properties of the non-linear g () =x's™H (x —x@)
SLP classifier are determined by one of the seven L
statistical classifiers analysed in this paper. s | CoVie-1/0) @Y _ o F
11. The overtraining effect is caused by two factors. First of Z(X X ) S (X X )_WEH W

1 _
X— 2(M1+M2)> 'z l(l«u — )
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where dimension9, then there arise problems associated with the
,wp)’=S‘1(>_<(1) _)7(2)) inversion of the sample covari_ancg matisx _There are
several ways to overcome this kind of difficulty. We
1 describe only three of them.
Wo= — EWF’(X(” +x9) (8) 3.2 One of the approaches is to assulhe | -2 (o is a
scalar). This means we can assume the pattern classes to be

' L spherical Gaussian. Therefore, when classifying according

X0 = = 3" x0 to the sign of the DF, one can omit the covariance matrix;

Nij = i.e., we have the following DF

6700 =X (¥9 - ) - S(xY+%2) ({0 %) (@)

1 2 N _ . .
S= mi 2 (Xj(l) - f(')) (Xj(l) - >_<('))' ) This classifier can be obtained from heuristic (ad hoc) con-
! 2 I=1j=1 siderations, if we suppose that pattern vectors of each class

is a sample pooled covariance matrix, the maximum likelihood are similar among themselves and close to the “typical
estimate of the covariance matiixof two Gaussian classes. member” of this class (i.e., the centre with sample mean
This linear classifier is called ttetandard Fisher DFIn DA it vectori“)), and perform the classification according to the
is sometimes called the Anderson classification statistics. distance to the meaxt’. Therefore this classifier is called

In the finite learning-set case, the sample mean vectorsthe Euclidean distance or the nearest means classiiete
xV and x®, the sample covariance matri are inexact that for a uniform prior distribution of the differenge= p,
estimates of unknowp,, p, andX. Therefore the sample- — p,, EDC is the optimal Bayes predictive classification
based classification rule is conditioned by a particular rule for spherical Gaussian patterns (Abramson and Braver-
random learning set. Its performance—a conditional prob- man, 1962). This means that, in a variety of classification
ability of misclassification (generalization error)—will be problems defined by the prior distribution af no other
higher than that of the Bayes optimal DF. When prior prob- sample-based classifier will perform better. It is very impor-
abilities of the classes are different aNgl# N, the sample  tant to remember this in the analysis of the overtaining
plug-in DF with weights (Eq. (8)) is not an optimal rule effect.
among all possible sample-based classifiers. In statistical 3.3 Another approach to overcoming difficulties asso-
pattern recognition, a Bayes approach for designing optimal ciated with the matrix inversion in regression and DA is to
sample-based classification rules is developed. In this use the shrinkage (ridge) estimate of the covariance matrix
approachp 1, p, andX are supposed to be random variables, Se=S+
and the prior distributionpior(p 1,2, X) Of these variablesis ) ) _ _ _
supposed to be known. Then we seek a posterior (predictive)instead of estimate (9). Heteis thep X p identity matrix
density of the vectoX, and we design a classifier for this @ndX\ is a positive regularization constant.

wh = (W, W, ...

is a sample mean vector, and

density estimate. For a uniform prior distribution jof, u» In _this case the weight vector of the linear discriminant
and X, the predictive density was determined as (Geisser, function becomes
1964; Keehn, 1965) wRPA (S+ )~ 1 ()_((1) _ )7(2)) (12)
f(XIx(ll),x(zl), ---,X(NZ),Wi) o < N; )plz This procedure is calledegularized linear discriminant
? Ni+1 analysis (RDA). When \, the regularization constant, is
extremely small, its influence is insignificant and we get
N —0)\ra—1 <0\ — (N+N2—3)72 the conventional Fisher linear DF. Whenis very large,
( i(x—=x")'STH(x =X )) . . .
1+ (10) the influence of sample estima$edisappears and we have
(Ni+1)(Ni —2) the Euclidean distance classifier.

34 If Nt + N, = n < p + 2, the covariance matrix
becomes singular. Therefore, instead of the conventional matrix
inversion, use of @seudoinversioof this matrix is sometimes

The use of the density estimate (Eq. (10)) to design the
classification rule results in a quadratic discriminant func-

tion. WhenN, = N; = N and the prior probabilities of the ) ) .
classes are equal, this optimal “Bayes predictive classifier” Suggested. The sense of the pseudoinversion of nitaan-
is linear and becomes equivalent to the Fisher linear discri- SISt 0f & singular value decomposition of makix

minant (Gupta, 1977). This means tRisher linear DFis / d 0

the optimal sample-based classification rule in the sense that! KT "= [0 O]
it yields the minimal classification error for a set of classi-

fication problems defined by a uniform prior distributioh where

1, po andXZ. No other sample-based classification rule will [tl]

yield a smaller generalization error. =

If N, andN, are small in comparison with the number of t
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is an orthogonal matrix such that
d 0

0 O]

andd =t,Kt ;" is anr X r diagonal matrix composed o=

N; + N, — 2 non-zero eigenvalues dk. Thus, the
pseudoinverse df is

. dt o
K'=T’ T
0 o

This classifier is calledhe Fisher linear DF with pseudo-
inversionor, simply, a Pseudo Fisher classifier:

TKT ' = [ (13)

(14)

WFpseudo= K* ()7(1) _ )7(2)), (15)
where the data is centred a priori, i.82 = —x®, and
l .
(l)( _(l)), 16
Nl + N2 i= 1]2 ! ! ( )

3.5 A generalization of the Fisher critericio obtain the
weights of the linear discriminant function was proposed by
Randles et al. (1978). They suggested minimizing

1 i % t— W'X]-(i) —W,

N1+N2i:lj:1‘p Vw'S™w
wheret!’ is a class index of the training pattern vecx$t:
t¥ = +1 andt® = — 1, ande(e) is a non-decreasing odd
and non- constant function: e.g(e) = (— 1) tanhg) (w
is a positive constant). In fact, while designing his linear DF,
Fisher (1936) used the linear functigc) = . The use of
the non-linear functiok(e) is a generalization of the Fisher
criterion. Because of the saturation @(s), the solution
becomes more robust to outlietisan the standard Fisher
discriminant. For numerical optimization of the above
criterion, the functionp(e) should be smooth and differenti-
able. The properties of the DF are similar to the soft limiting
activation function (Eqg. (2)) used in ANN design. In an
exceptional case, wherg(e) is a threshold function, the
minimization of criterionTye, results in minimization of
the number of misclassifications in the learning set, i.e.,
the empirical error.

3.6 Most often, the objective of classifier design is to
obtain a discriminant function that yields the minimum
classification error. Thus, in training, usually one attempts
to minimize the number of vectors misclassified—the
empirical error. In statistical pattern recognition, one often
minimizes the cost function

b 2ol (o o)

wheret(') is a class index of the training pattern vectSt:
1(1) + 1 and t —1, and ¢(¢) is a pattern error
function. |f¢(t(|) (W xj(') +W0)) is the threshold function:

ga(t,-(‘),g) = { !

0

(17)

gen

Cost_ (18)

forg<O0

otherwise
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we minimize the empirical error. However, this function is
not differentiable. In the adaline, one uses a quadratic func-
tion ¢(d) = d?. It is important to remark that minimization

of this and other differentiable cost functions does not imply
minimization of the classification error. Amari (1967)
suggested using a function

6(d) = arctan(d/dy)

where d=It" - (w’xj(_') +w0) IIv/w'w is the distance
between the vectox"” and a discriminant hyperplane
w’xj(') +w, =0, andd, is a sufficiently small constant. For
smalld,, the functione(d) is similar to the threshold func-
tion, and roughly, we minimize the empirical classification
error. This leads to theninimal empirical error (MEE)
classifier

The minimization of Eq. (18) is performed in an iterative
way. It is, in fact, a version of the generalized Fisher criter-
ion (Randles et al., 1978). Do-Tu and Installe (1978) sug-
gested changing a slope of the functigfu) so that, with an
increase in the number of iterations, this function would
gradually approach the threshold function and the cost func-
tion (Eq. (18)) would eventually minimize the empirical
error (a window function technique). A dozen algorithms
by other authors were also mentioned in Section 1.

3.7 When the zero empirical classification error is
obtained, the resulting discriminant function is no longer
unique. To obtain a unique rule, some additional criteria
are introduced that favour an increase in the distance
between the discriminant hyperplane and the learning-set
vectors closest to it. In one of the first known algorithms,
in order to find the weight vectow, Vapnik and Chervo-
nenkis (1974) suggested minimizing the quadratic form

w'w (29)
under the constraints
wx®P=A and wx? < -A (=12..N;i=12)

where A is a positive constant, a bound for the margin
(“generalized portrait” method).

To this end, they used quadratic optimization techniques.
After optimization a finite number of vectors, called “sup-
porting vectors”, determine the position of the discriminant
hyperplane. In one of the latest algorithms, more neighbour-
ing learning vectors than the “supporting vectors” contri-
bute to determination of the final position of the hyperplane.
In this article, we call all the classification algorithms with
an increasing margihmaximal margin” classifiers

4. Weight and cost function dynamics in BP training

We demonstrate thdhe criterion (Eqg. (3)) used to find
weights of the non-linear SLP classifier changes during the
training process Let v, =1/, Zj_l(Wo-i-W x") be

average values of a dlscnmlnagﬁ')( (')) =w0+w’xj(i).
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We use absolute valueswfandv, as indicators that show a
similarity of the soft limiting activation function
tanh| W0+W'X(') to the hard limiting threshold function.
Inspection of curve tanigf |nd|cates that for very small
absolute valueg; andv,, the valuesg vary in the neigh-
bourhood of 0 (the zero point). Then the activation function
acts as a linear function. For extremely largeand \73’
contributions tanfiw, +w'x" ) of all learning vectors("
are close to eithex1 or +1. Then the activation function
“tanh” is actually acting like a threshold function.
Obviously, the values; andv, depend on the magnitudes
of the weights.

Typically, during perceptron training, one starts from

289

where

k=2/(D*+4(N — 1)/N)

Ax=x® _x@
and
D?=AX'S™1AX

is the sample Mahalanobis distance. For simplicity, we
assumed® + x@ = 0. This assumption does not affeet
Then the average values are given
—UN, Z lg = * 1(1+D?. We havelyl = 0.2
forD_l V! _05forD_2and|v|| = 0.8 forD = 4.

by

very small weights and normalizes the data. Some authorsThe values/; andv, become close to the desired outputs 1

suggest having data values in the intenall(+1); others
suggest moving the centre of the daw(¥™® +x@), to the

and—1 for very largeD. In the case of aon-linear activa-
tion function higher order statistical moments of the learn-

zero point and making unit variances of all the features. For ing set affect cost function (3). Let us analyse the GCCM

very small initial weights, the scalar produg@ x(' are
close to zero. Therefore, during the first |teratton the acti-
vation function acts as a linear function, i.e q' =g",
giving do(g)/oag = 1. If 5, the learning step, is small, we
obtain small weights and small vaIuesg#‘?S J(') in sub-
sequent iterations. In fact, the activation function
“tanh gj(') " will act as a linear function.

With an increase in the number of iterationghe cost
function (Eqg. (3)) tends to its minimum and the weight
vector w; to its optimal valuew, where the minimum of
Eq. (3) is obtained. We show that final average values
v =N, ZN lg]') depend on the target values.

Let the activation function be the linear function
°(9Q o, 9 =1, 9 = -1, N, = N; = N and

> p + 1 so that the sample covariance matiis
not singular. Equating the derivatives

aCOSt 0 _ M\
= t! x ) 'w
IZIJZI( o= (%) w)
— (t2 +12)724+ Wo + (ke x® + kX)) 'w (20)
and
GCOSI 1 2 X |) 0 _ MY\
a2 2 (17w (x7) w)
= — (XD + tx@)2 4+ (XD +xP) w2+ Kw  (21)
where

1 2 N ] )
= —N Z ;Xj(l) (Xl(l)) ’, Ki = Ni /(N1+ Nz)

data model and assume all sample statistical moments of the
learning setX{Y, ..., X andx®, ..., X to be identical to
that of the GCCM model with the paramete?r@ x® and

S, i.e. density f XJ(') =N(X,x",s). The optimal
weight vector for this niodel is the Fisher DF. Its weight
vectorw = cw" and the threshold/, = cwj, can be changed
arbitrarily by scaling by any positive constantHowever, a
change irc changes cost (3). We evaluate average vaes
and v, where the minimum of the cost for the “tanh”
activation function is obtained. The expectation of cost
function $3) with respect to the set oNZandom learning
vectorlel), o X@ s

EqxCOS(W) = J...Jcost(w,x(ll), ...,X(ﬁ))f (X(ll), ...,X(Nz))
ax?...ax3 = 2 { (1~ tanh(e(wX + w,)) PN (X, 2, 5)

T (t, — tanh(c(w'X + wp)))2N (X, X2, s)} X (23)

A numerical minimization of Eq. (23) with respect to the
parameter ¢ results in: f@ =1 1| = 0.25, forD = 2 Iv;| =
1, forD = 41| = 4, and forD = 6 Iv;| = 9. We see that the
valuesvy, v, and the actual similarity of the activation func-
tion tanhg) to the threshold function depend on the separ-
ability of the learning set: i.eD, the sample Mahalanobis
distance. For close pattern classes we obtain small weights,
and therefore we cannot minimize the empirical classifica-
tion error; however, for distant pattern classes, with an
increase in the number of iterations, we minimize the
empirical classification error more and more exactly.
Three important remarks.

to zero, and solving the resulting linear equations, we can 1. The sample estimaf®” is a biased estimate of the true

show that for small weights (linear activation function), the
minimum of cost function (3) is obtained at

Wo=0, w=kS 1AX (22)

squared sample Mahalanobis distaiée
ED®= 6T, Ty (24)

where termsT, and Ty have been defined by Eqg. (5) in
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Section 2. Thus, for finite values of the learning-set size in principle obtain seven different statistical classifiers.
N, we have higher separability of the learning sets. For First, consider a case where at the beginning of training
very small learning sets, whéw, + N, — p, bothED? the weights are small and the activation function acts as the
and|v| increase abruptly, and cost function (3) actually linear function Thuso(g) = g, anddo(g)/dg = 1. To obtain a
starts minimizing the empirical classification error.The more general result, we temporarily reject the assumption
conclusion that, for the soft limiting non-linear activa- N, = Nj. Then instead of Egs. (20) and (21) we have
tion function and very distant classes, the weights can
increase without bound is easy to understand on the Osﬂ = — (tyky+toko) + Wog) + (kl)z(l)Jrkz);(z))fW(t)
Wo = Wo(t)

basis of intuitive arguments. Let the empirical error be  MWo

zero. This means that valugS’ are positive and values (26)

gj(z) are negative. In order to minimize cost function (3)

the training algorithm will move)gq(l) tot;=+1and acost

0 q(z) to t, = —1. This is possible Only by increasing ow

the magnitudes of the weights. Obviously, the weights

will not increase without bound ifltl < 1. n (kl)—((n n kZ)?(z))Wo(t) +Kwg 27)

While minimizing cost function (3) by the gradient-type i )

backpropagation algorithm, certain numerical difficulties WhereK was defined in Eq. (16).

arise. In the case of small empirical error, the weights  |f the prior weights are zero, i.ewo = 0 andw = 0,

become largethe neurone becomes aged and begins to then after the first learning iteration one has

produce almost categorical answers outputs acost

0 Wo—i—W'Xj(') are close to eithe#-1 or —1. Then the W)

gradient of tHe cost function is near to zero. Therefore in

BP training with constant learning step the training Zn(tlkl)z(l) +t2k2>?(2)) (28)

process slows down and afterwards actually stops.

order to force the backpropagation algorithm to adjust

the weights continuously and increase the margin, we wg, =nt;k;AX, Wgq =0 (29)

need to increase the magnitude of the learning ste L . . .

Analysis shows that, in ordger to ensure a linear ir?creasloe-rhIS Is1s the weight vector of the Eu<_:l|_((1§an_((21)|stance

in the magnitude of the weights, the learning stgp cIaSS|f|erdes_|gneq for the qentred data_, L&, +.X i

should increasexponentiallywith an increase in itera- 0. Th.e cIassq‘lcanon acc_ordlng tq the sign of discriminant

tion numbert: function (29) is asymptotically optimal, when the classes are
spherical GaussiaN(x,l6?) and also in many other situa-

= — (tlkl)?(l) + tzkz)?(z))

W =W

Wo) =1 (tlkl + tzkz) and W) =W —1

If toN, = — t1Ny, then

1= Nstar-e’ (25) tions. Itis a nice property of the single-layer perceptron that

3.

5.

it should become a comparatively good statistical classifier
just after the first learning iteration! To achieve this, one has
to fulfil conditionsE enumerated in Section 2. We see that
there are several arguments for using the centred data
(x®@ = —x®) with N, = N,.

5.2 In further analysis, we assume that these assump-
tions are again fulfiledt®™ = 1 andt” = — 1, and analyse
process stops. a change in the weight vector after the second and next
If the empirical classification error is large (e.g., close to Iterations. The usage of total gradient adaptation rule (Eq.
or larger than 0.25), then we have small weights, and we (4)) With gradient given by Egs. (26) and (27) after the
cannot minimize the empirical error. To force the classi- S€cond iteration results in:
fier to minimize the empirical frequency of misclassifi-  wg; =0
cation, we can add to the cost function (3) a€gative
weight decayy — N w'w or + A (w'w — h??2 the so d
called “anti-regularizatiort term (Raudys, 1995). This  w, =w® 4y

where o« is a positive constant, slightly larger than 1
(e.g., in our simulation studiea was taken between
1.001 and 1.3).

In the practical application of this approach, one faces
difficulties associated with the accuracy of calculations.
Very large magnitudes of the weight vector actually
cause zero values of the cost function, and the training

1

dCoS _ 1 _
—t = —nAX—'r](— EAX+ KW(l))

term forces the learning algorithm to increase the mag- ow w=wg 2
nitude of the weights and, consequently, to increase the

o . 1 B
actual slope of the activation function. _ (I . (I _ nK)2>) EK ~1A%
Seven types of statistical classifier in SLP design After further iterationswg,) = 0,

-1 —
5.1 Inthis section we show that, in BP training, one can W = (I = (I = 1K) )EK AX (30)
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where

_ iN_i % (|)<X(|)>

The matrixK is supposed to be non-singular and have an
inverse.
Employing the first terms of expansions

N-1g, %A)?A)?’

1
(I —9K) =1 —tgK + Stt— 1)q2K? —

and

(I =BK) " t=148K + ...

for smally andt, we obtain

1 1 4
Wy = <tnK - Stt- 1)172K) oK LAX

1 1 -1
=ty 1+ (t-—DnK | A
Ztn(+2(t m ) X

- %tn(l —(t—1)nK)Ax
ot (t—Ln/N 1 \\ * -
_t—l(l+ 5 ( Z,AXAX>) AX

Assuming the matrix\ + Sto be non-singular, after some
matrix algebra we get

-1
N S+

2 N -1 _ 1N
=(l————+S) AX——— 31
o= (1 gt Feanege ©
where
2t
kr= 7=
(D& + 2y(t — 1)(N — 1)/n)
D2 = AX'Sg 1AX
and
2 N
S+1
=St N-1
The weight vectorw, is equivalent to that resulting
from the regularized linear discriminant analysis

(Eq. (12)) with the regularization paramete&r = (2/
(t-1)n)(N/N — 1). The regularization parametarchanges

201

be written in the following way:

t
wo = 5 3. Chri(— K" ax (32)

This representation does not require the mafrito be non-
singular. Let the orthogonap X p matrix T satisfy
representation (13). Then

Wy = ZQ( )T/ (TKT )°~ ' TAx= 5 ZQ( T

[d 0]°* d 0]°
oo P (Seen]s o))
0 t
))m
0 >t>TWFpseudo

where
d-t
i [ 1 TAX=K*AX

0O O

has been defined in subsection 3.4.
For small values of), with an increase in the number of
training iterationd,

(=[5 o))

Thenw gy — w™*"“(the weight vector of th&isher linear

DF with pseudoinversion This conclusion is correct while
the inputsy = w’x + w,, of the activation functiom(g) vary

in the linear interval. Consequently, we can obtain this
classifier when we haveon-limit target valuesl|{| < 1).

5.5 Suppose théarget valueddiffer from the limiting
values (e.g.t; = 0.9 andt, = — 0.9 for the tanhd) activa-
tion function). Then, for correctly classified, vectors, the
smallest deviations(t" — tanh(w'x" +w, will be
obtained for medium size weights. For the medium size

during training: it decreases with increase in the number of weights, the activation function becomes a non-linear func-

iterations.
5.3 The above expressions indicate that in training
whent — o«

(IZ N

C—DgN—1"
the resulting classifier approaches the Fisher .DFhis
conclusion follows also from Eq. (22).

5.4 While deriving weight vectors given by Egs. (22)
and (31), the sample covariance maBiwas assumed to be
non-singular. When the number of learning sampleis2
p + 2, this matrix is always singular. Weight vector (30) can

s) S, ks—1

tion, similarly for the non-decreasing odd and non-constant
function ¢(g) in Eq. (17). Thus the minimization of cost
function (3) results in a linear classifier that is very similar
to generalized discriminant analysithe Amari (1967)
algorithm, and the window function technique discussed
earlier in the previous section.

5.6 When one uses limit values of targets£ + 1 and
t, = — 1 for the tanhg) activation function), we have seen
that for twodistantclasses we can obtain very high weights
after applying the minimizing cost function (3). In that case,
for all the training-set vectorghe activation function is
essentially acting as a hard limiting threshold function



292

This means that if one uses global minimization techniques
(which enables us to avoid local minima&je obtain a clas-
sifier similar to the minimum empirical error classifier

5.7 When the number of dimensions exceeds the num-
ber of training samples and limiting values of the targets are
used, the proper training of a perceptron will always lead to
zero empirical error. Zero empirical error can also be
obtained also whem = N; + N, exceeds the number of
dimensiong, the distance between the pattern classes being
sufficiently large. Now let the empirical error be zero, the
targetst; = 1 andt, = —1, and denote byD(x*,w) an
Euclidean distance between the discriminant hyperplane
g(X) = w'x + w, = 0 and the learning-set vectrf closest
to it. Let D(x],w) be the Euclidean distance between the
discriminant hyperplane and the second learning-set vector
x 1 closest to it and different from*. Then, asymptotically,
with an increase in the magnitude of the weighid, the
ratio (t= — o(w'xf))?/(t; — o(w'x}))? diminishes to zero.
This implies that the relative contribution of the second
learning-set vectok |, closest to the decision hyperplane,
becomes insignificant. The learning algorithm tends to put
the decision hyperplane further fraitme closestearning-set
vectorx*. When the learning process is over, several vectors
{x*} are at the same distance from the discriminant hyper-
planeg(x) = w’'x + w, = 0. Only these learning-set vectors
{x"*%} closest to the discriminant hyperplane (Cortes and
Vapnik, 1995 call them supporting patterns) contribute to a
value of the cost function and to the final determination of
the hyperplane location. Thus, we obtain theximum
margin classifier

6. Simulations

The aim of this section is to illustrate a variety of possible
statistical classifiers that can be obtained in SLP training,
and the ways of controlling the type of classifier obtained.
For this we use the simplest bivariate artificial data sets.
More details on classifier complexity control are presented
in Part 1l

6.1 In Fig. 1 we show the distribution of two bivariate
Gaussian classes p(X) — two small ellipses — contami-
nated with 10% additional Gaussian noiseON(). The
noise patterns are denoted by+‘" and “ + ”, and the
signal classes by two ellipses. Both signal classes have dif-
ferent meansp, = —pu, = p and share the common
covariance matrix:

oos] *~|ooas ) "~os 20
p= ,

0.05 0.018 Q01
We call thisdata set Al.

The SLP classifier with the sigmoid activation function
and target$; = 0,t, = 1 was trained fos = 1000 iterations

by the standard BP in the batch mode, with learning step
5; the learning-set size beimMgy = N, = N = 250. In all the

0.040 Q018 10 05

05 10
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X2
2t

1l

2t

1 2 x
Fig. 1. Distribution of two Gaussian pattern classes contaminated with
additional noise and positions of the discriminant lines: 1 — SLP after

the first iteration, 2 — EDC, 3 — Fisher linear DF, 4 — SLP after 250
iterations, 5 — SLP at the end of the training process, 6 — MEE classifier.

-2

experiments reported in this paper, we used centred learning
data; the starting learning vectorg = 0. After the first
iteration (boundary 1 in Fig. 1) we obtain EDC (boundary
2), yielding 22% of errors. After 250 iterations the resulting
classifier (boundary 4) became very close to the Fisher
linear DF (boundary 3) and yielded 12% of classification
errors. After a further 750 iterations with learning step-

5, the decision boundary of the SLP classifier actually
became identical with the Fisher linear DF (boundary 3).
Only a significant increase in the learning step (upte
100) moved the decision boundary (boundary 5; after 1000
iterations) to boundary 6 of the minimum empirical error
classifier with 5.5% classification error.

6.2 More details on finding the maximal margin can be
found in Fig. 2. Each class here consists of a mixture of two
Gaussian densitieslgta B. Each subclass is distributed on
a separate line in the bivariate space. All four lines are
parallel. After the SLP training with an exponentially
increasing learning step, the decision boundary was placed
approximately halfway between the vectors of two closest
subclasses of the opposite classes. This gave the maximum
margin classifier. The remaining vectors from other two
subclasses do not affect the position of the decision
boundary.

6.3 The details on using the exponentially increasing
learning step in SLP training are presented in Fig. 3.
There we seé¢he process of change in the magnitude of
the weightsof the SLP classifier durinty,., = 800 training
iterations with 100-variate GCCM data NEX): u»
—pmi=p=R1p2....n100"; randomly x2 distributed com-
ponentsu; were normalized 'p = 4) and rankedu, >
B2 > . = p1oor 0=((Uij)), gij =1, wheni =jand — gjj =
0.3, wheni # j; N = 100.

In this high dimensional case, we have two distant classes
and a comparatively small number of learning vectors.
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growth, we have to increase the learning step (see the pre-
vious section). Constant values of the learning step ensure
the quality of the learning process only for the first few
iterations, while the weights are small and the activation
function (Eq. (2)) is unsaturated.

6.4 If the empirical classification error is large (e.g.,
close to or larger than 0.25), then the small weights prevent
us from obtaining the minimum empirical error classifier
even when the targets acquire their limit valugsl (and
—1 for the tanhg) activation function). To force the classi-
fier to minimize the empirical frequency of misclassifica-
tion, we add the ‘anti-regularizatiory term to cost function
(3). This technique is illustrated in Figs. 4 and 5. In this
* experiment, we have the same kind of data as in Fig. 1;
3 however, the parameters differ:

-3 -4 -1 1] 1 x1
0.0301 [0.040 00196}

Fig. 2. The SLP as a maximum margin classifier. Data are a mixture of = [0_015 0.0196 001
Gaussian subclasses on four parallel lines; 1 — the discriminant line after

X2

training by varyingy (y = 0.5-1.09), only four vectors (from the closest
subclasses) contribute to the determination of exact position of the bound- N — 10 —-07
ary, 2 — the discriminant line after SLP training wigh= 0.5. N 07 10

Therefore, the learning-set vectors are linearly separable\e call thisdata set A2

and, after achieving zero empirical error, we obtain acertain e should like to draw attention to two facts that, in
margin between the decision boundary and the learning-setyjyariate dataA2, we have a comparatively large number
vectors. Two strategies of control of learning stgpvere of learning vectorsN; = N, = N = 250) and that the
compared in this experiment. In the first test, the parameterusigna|n and “noise” components have opposite correla-
n was increased exponentially with the iteration number  tjons. The variance of “noise” is much larger than that of
according to Eq. (25). In the second and the third tests, we the “signal”. Therefore the direction of the decision bound-
used two constant values 9f(0.01 and 0.1). ~ary of the EDC (Graph 1) and that of the Fisher DF (Graph
Obviously, the value of essentially affects the magni- 2y differs substantially from that of the boundary of the
tudes of the weights and the margins. Consequently, it ontimal linear classifier (Graph 3). In traditional training
affects the learning process and the statistical properties Of(conditions E, n = 10), the boundary of the SLP moves

the classification rule obtained. In order to obtain maximal from (1) towards (2) for a while, and then rotates back a
margins, one needs to have large weights. To ensure weight

el
M

Fig. 4. Distribution of two Gaussian pattern classes contaminated with
additional noise, and positions of the discriminant lines: 1 — EDC, 2 —
Fig. 3. Magnitude of the first weigHtv,| and the margirM versust, the Fisher linear DF, 3— optimal linear DF, 4 — SLP with conventional
number of iterations: 1 — = 0.01-1.0% 2 — » = 0.01, 3 —» = 0.1. training, 5 — SLP with anti-regularization.
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0.35
0.3
0.25 'y
0.2
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100 200

Fig. 5. The empirical and generalization errors versuthe number of
iterations: 1 — SLP with conventional training, 2 — SLP with anti-reg-
ularization.

little bit as long as it settles at (4). Graph 4 (after 5000
iterations) is close to the decision boundary of the EDC.
After the first iteration, the classification error is 0.41 and,
while approaching the Fisher DF, it first increases and after-
wards decreases, fixing itself at 0.42.

The use of the additional anti-regularization term
+1.60v'w — 25%2 in the cost function does not change
the learning curve at the beginning but later on, when the
weights increase substantially, the decision boundary begin
approaching the optimal boundary. Graph 5 in Fig. 4 shows
the position of the boundary after 500 iterations. As a result,
we obtain 11% of classification errors, the same as tha
obtained with use of the optimal linear classifier designe
to classify only the Gaussian “signal” patterns (Fig. 5). We
see, in the case of a large number of highly contaminate
learning-set observation vectors, that utilization of an addi-
tional anti-regularization term can pull the discriminant
hyperplane near to that of the minimum empirical error
classifier.

7. Conclusions

We have established that, during adaptive training, the

weights of the SLP classifier increase gradually, and one 3,

can obtain seven statistical classifiers of different

complexity:

» the Euclidean distance classifier,

« the regularized linear discriminant analysis schema,

» the Fisher linear discriminant function,

» the Fisher linear discriminant function with pseudoin-
version,

» the generalized Fisher discriminant function,

e the minimum empirical error classifier and

e the maximum margin classifier.
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The analysis performed indicates that, despite its apparent
simplicity, the SLP trained by adaptive optimization tech-
nigues is, in fact, a very rich family of linear classifiers
There exists no unique single-layer perceptron classifier
On the contrary, there is a great number of classifiers that
can be obtained during trainingWe can assume that, in
principle, more variants on the known classifiers can be
obtained. Possibly, there exists a close link between multi-
layer perceptrons and statistical techniques, too. This is a
subject for further study.

Several means of controlling the learning process are
described in the literature. These means are associated either
with the cost function or with the optimization technique
used. The most popular cost function is the sum of squares.
Other types of cost function can undoubtedly originate more
types of classifier. Different regularization terms are fre-
guently added in order to control the solution obtained.

The most widespread optimization technique is the
gradient-type backpropagation algorithm. This algorithm
is controlled by weight initialization, the number of itera-
tions and the learning-step parameter. Adding noise to SLP
inputs and/or outputs is a popular approach to influence the
learning process. It has a similar effect to the utilization of
the conventional regularization term. In the present paper, it
has been shown that all the means enumerated influence the
type of classifier obtained in each training experiment. For
example, the number of iterations is an almost universal
factor for controlling the type of classifier. One of the alter-
natives to the BP technique is the conjugate gradient tech-
nigue — a modification of the second-order (Newton)
method. For a linear activation function the cost function

t(3) is quadratic. Then use of a second-order optimization
d technique, such as the Newton method, can lead to the

Fisher classifier in a single iteration, avoiding the Euclidean

ddistance classifier, and the regularized DA. Therefame,

this sense, gradient BP training can become preferable
since it does not require an additional regularization term,
such as the “weight decay” term added to the cost function.

In order to get a wider range of classifiers in each training
experiment, in addition to a variety of known complexity
control technique$ive newones were proposed:

1. moving the learning data centré2fx™® +x@), into the
origin of the coordinates,

zero weight initialization,

target value control,

use of the additional negative weight decay term called
“anti-regularization” and

5. use of an exponentially increasing learning step.

2.

4.

All the factors enumerated act simultaneously, and often
(although not always) the influence of one factor can be
compensated by others. There are several directly uncon-
trolled factors. These are false local minima and high-
dimensional extremely flat areas of the cost function,
where the training process almost stops. Adding noise to
inputs of the perceptron or to its weights, as well as a
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constant or temporal increase in the learning step, can helpAnderson, T.W. (1951). Classification by multivariate analyBsychome-

to move the perceptron weight vector from these d”ikav 16%3v%/_5§'3 i RR. (1962). Classification into & "
|nappr0pr|ate areas. naderson, [.W., ahaaur, R.R. ( ) assification into two muiti-

. .. . L. variate normal distributions with different covariance matricgsn.
In each single training experiment, one cannot optimize  \ath. Stat, 33, 420-431.
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function to be minimized, the optimization technique and Boser, B., Guyon, |. and Vapnik, V. (1992). A training algorithm for opti-
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] ininadd 1+ x@ — —
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