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Abstract

Unlike many other investigations on this topic, the present one considers the non-linear single-layer perceptron (SLP) as a process in which
the weights of the perceptron are increasing, and the cost function of the sum of squares is changing gradually. During the backpropagation
training, the decision boundary of of SLP becomes identical or close to that of seven statistical classifiers: (1) the Euclidean distance
classifier, (2) the regularized linear discriminant analysis, (3) the standard Fisher linear discriminant function, (4) the Fisher linear dis-
criminant function with a pseudoinverse covariance matrix, (5) the generalized Fisher discriminant function, (6) the minimum empirical error
classifier, and (7) the maximum margin classifier. In order to obtain a wider range of classifiers, five new complexity-control techniques are
proposed: target value control, moving of the learning data centre into the origin of coordinates, zero weight initialization, use of an
additional negative weight decay term called ‘‘anti-regularization’’, and use of an exponentially increasing learning step. Which particular
type of classifier will be obtained depends on the data, the cost function to be minimized, the optimization technique and its parameters, and
the stopping criteria.q 1998 Elsevier Science Ltd. All rights reserved.

Keywords:Single-layer perceptron; Statistical classification; Generalization error; Initialization; Overtraining; Dimensionality; Complexity;
Sample size; Scissors effect

1. Introduction

The single-layer perceptron (SLP) is the key elementary
component in multilayer feedforward networks used to
solve real-world problems. The behaviour of a single
neurone serves as the simplest prototype model for studying
the characteristics of more general non-linear models such
as multilayer perceptrons. Despite the fact that the SLP has
been studied for quite a few years, there are still some phe-
nomena which remain to be studied. These are, for example,
the generalization error, dynamics of learning, regulariza-
tion terms and overtraining. It is reasonable to study these
problems first by using the very simple model of the single-
layer perceptron. The non-linear SLP has much in common
with a variety of conventional linear classification algo-
rithms. Therefore it is important to follow parallels between
statistical and neural net approaches, to find out which result
from statistics can be used in neural net analysis.

More than two hundred algorithms for designing

statistical classification rule have been proposed in the lit-
erature on statistical pattern recognition and discriminant
analysis (DA). We mention below only those that are similar
to the perceptron design algorithm, and can be useful as a
source of practical results and interesting ideas for further
investigations. The first known classification rule is the stan-
dard linear discriminant function (DF) proposed by Fisher in
1936 (Fisher, 1936). Anderson (1951) has shown that it can
be obtained from optimal statistical decision function the-
ory. There we assume multivariate Gaussian classes with a
common covariance matrix (GCCM), and insert maximum
likelihood sample estimates instead of unknown parameters
into the model. Koford and Groner (1966) have shown that
when we have the same number of learning vectors from
both competing classes, the adaline linear classifier of
Widrow and Hoff (1960) is identical to the Fisher linear
rule. The Fisher rule requires a sample-based covariance
matrix to be inverted. In the case of a small learning set
and large dimensionality, the situation becomes proble-
matic. One of the solutions is to use a pseudoinverse of
the sample covariance matrix (Schurmann, 1977; Malinovs-
kij, 1979; Duin, 1995). A variety of structures of the
covariance matrix, including a diagonal, a block diagonal,
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tree-type dependence models and others, have been pro-
posed to overcome this kind of difficulty (see, e.g., review
in Raudys, 1991). One of the most successful solutions is the
addition of a small positive constant to diagonal elements of
the covariance matrix. This technique was first used in
regression (Hoerl and Kennard, 1970) and later in discrimi-
nant analysis (Di Pillo, 1979; see also Friedman, 1989;
McLachlan, 1992) under the title of ‘‘regularized
discriminant analysis’’.

The main objective in classifier design is to obtain a
classifier that results in the minimum number of misclassi-
fication errors. Anderson and Bahadur (1962) obtained the
optimal linear DF to classify two multivariate Gaussian
populations with different covariance matrices. Their result
was generalized to a more general class of distribution den-
sities by Patterson and Mattson (1966). When one does not
have the analytical form of distribution densities, one needs
to use the learning-set data and minimize the empirical
(learning-set) error rate. Amari (1967) suggested using a
soft limiting ‘‘arctangent’’ function whose closeness to
the threshold function can be controlled by a parameter.
Do-Tu and Installe (1978) suggested to change this
parameter gradually. Then the pattern error function (a con-
tribution of an individual learning-set vector to the cost) is
smooth at the beginning, but later on approaches the
threshold function, and finally minimizes the number of
empirical errors. A similar approach was used by
Pietrantonio and Jurs (1972). A variety of other algorithms
are based on the use of a sequential random search (Wolf,
1966), the Kiefer–Wolfowitz stochastic approximation
(Yau and Schumpert, 1968), linear programming (Ibaraki
and Muroga, 1970), the algebraic method (Warmack and
Gonzales, 1973), linear transformations of the coordinate
system (Miyake, 1979) and heuristic ideas (Vapnik and
Chervonenkis, 1974). Ad hoc principles are used to over-
come numerical difficulties.

When zero empirical classification error is obtained, the
resulting discriminant function is no longer unique. Some
additional criteria are introduced which favour an increase
in the distance between the discriminant hyperplane and the
learning-set vectors nearest to it. Examples are the tolerance
function (Babu and Chen, 1971) and the ‘‘margin’’ — the
Euclidean distance of the nearest learning-set observations
from the separating hyperplane [Glucksman, 1966; Vapnik
and Chervonenkis, 1974 (generalized portrait); Duin, 1995
(small learning sample classifier); Boser et al., 1992
(maximal margin classifier); Cortes and Vapnik, 1995
(support vector machine)].

Typically, in the study of the generalization error, the
single-layer perceptron is analysed as a separate special
specimen of the classification algorithm. Most often the
activation function (or the pattern error function) is assumed
to be the linear or the threshold function; sometimes it is
assumed to be a soft limiting one.In contrast with other
investigations, the present paper does not consider the non-
linear SLP as a single classifier. We investigate the SLP in

action. We stop and analyse the perceptron at different
moments of the learning process. We regard the SLP
classifier as developing during the training process. It can
adapt to the complexity of the pattern recognition problem.
On the way between the starting point and the minimum of
the cost function, the weights of the perceptron are increas-
ing. The actual slope of the activation function changes
gradually. Therefore, the decision boundary of the SLP
can become identical or close to that of seven classifiers,
analysed in the statistical pattern recognition and discrimi-
nant analysis. The objective of this article is to show how a
significant number of results from standard multivariate
statistical analysis can be used in the generalization error
analysis of simple artificial neural nets.

The article is split into two parts. In Part I, we show that
the non-linear SLP is not a single classifier but a process. In
Part II, we analyse the small learning-set properties of
several well-known statistical classifiers that can be
detected in the non-liner SLP training process. We analyse
the former and new results from a fresh, unique point of
view, using the terminology popular in the statistical
mechanics approach, and demonstrate how theoretical
results concerned with statistical classifiers can be used
for purposeful control of SLP complexity.

Part I of the article is organized as follows. In Section 2,
we enumerate the main results of the whole article. In
Section 3, we present five parametric statistical classifiers
based on the class distribution densities, and two non-
parametric classifiers based on the decision rule approach.
In Section 4 we show that in the backpropagation (BP)
training of the non-linear SLP classifier, the weights gradu-
ally increase, and the cost function changes gradually. In
Section 5 we show analytically that in adaptive SLP train-
ing, one can obtain decision boundaries for seven different
statistical classifiers. Section 6 contains experimental
illustrations, and Section 7 a discussion.

2. Main results

We analyse the non-linear SLP that hasp inputs
x1,x2…,xp and one output calculated according to the
following equation

output¼ o w9x þ wo

ÿ �
(1)

wherewo,w ¼ (w1,w2,…,wp)9 are weights of the discrimi-
nant function ando(g) is a non-linear activation (transfer)
function. To simplify analytical formulae in our analysis we
use the ‘‘tanh’’ function

o(g) ¼ tanh(g) ¼ eg ¹ e¹ gÿ �
= eg þ e¹ gÿ �

(2)

However, in simulation experiments, we used software with
the closely relatedsigmoid activation function, o(g) ¼ 1/
ð1þ exp(¹ g)) ¼ (tanh(g/2) þ 1)/2.

The SLP actually performs the classification of a vector
x ¼ðx1,x2,…,xp)9 into one of two classes:p1 andp2. It is, in
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fact, a modification of the prediction (regression) problem
for the ‘‘0–1’’ loss function. We consider the case where
perceptron weights are found in an iterative training proce-
dure, where the following cost of the sum of squares

costl ¼
1

2 N1 þ N2

ÿ �∑2

i ¼ 1

∑Ni

j ¼ 1
t(i)j ¹ o w9x(i)

j þ wo

� �� �2
(3)

is minimized. In the above formula,t(i)j is a desired output (a
target) forx(i)

j , the jth learning-set observation vector from
the ith class,N1 is the number of learning vectors inp1 and
N2 is the number of learning vectors inp2. In regression the
targets are continuous values. In classification, for the acti-
vation function (2), we usually uset(1)

j ¼ 1 andt(2)
j ¼ ¹ 1.

We call these valueslimiting ones. Another choice is:t(1)
j ¼

0.8 andt(2)
j ¼ ¹ 0.8. In simulations with the sigmoid func-

tion, we uset(1)
j ¼ 0 andt(2)

j ¼ 1 (limiting values), ort(1)
j ¼

0.1 andt(2)
j ¼ 0.9 (recommended by Rumelhart et al., 1986).

We mainly analyse the standard total gradient delta learning
rule (backpropagation (BP)), where the weight vector is
adapted according to the rule

w(t þ 1) ¼ w(t) ¹ h
]costl

]w
(4)

with h called a learning step.
In our analysis we have established the following facts.

1. When starting training from zero or small weights, the
magnitudes of the weights are increasing up to certain
values. These values depend on the separability of the
learning-set vectors and on the target values: for well-
separated learning sets with zero empirical errors and
limiting target values, the magnitudes can increase with-
out unbound, and for badly separated and/or non-limit
targets the final weights are smaller.

2. The statistical properties of the SLP classifier depend on
the cost function which, in turn, depends on the
magnitudes of the weights. At the start the weights are
small, and the activation function acts as a linear one.
Then we obtain the adaline cost function which leads to
the standard Fisher linear DF. With an increase in the
magnitudes of the weights, the activation function begins
to act as a non-linear one, and reduces contributions of
learning-set observation vectors distant from the discri-
minant hyperplane. Then we get a rule similar to the
generalized Fisher classifier which is robust to outliers
(i.e., atypical observations). When the weights are very
large, the contributions of all learning-set observation
vectors become close to eitherþ1 or ¹1. In that case,
we have a classifier close to that which minimizes
empirical (training) error. If the empirical error is zero,
we can obtain the maximal margin classifier for the
limiting target values.

3. The classifier obtained depends on the number of itera-
tions. If:

• the centre of the data, 1=2 x̄(1) þ x̄(2)ÿ �
, is moved to the

zero point,

• t2 ¼ ¹ t1N1/N2 (for t2 ¼ ¹ t1 this means we have an
equal number of training samples from both pattern
classes),

• we start training from zero weights,w0(0) ¼ 0, w (0) ¼ 0,
and

• we use total gradient training (conditionsE),then, after
the first iteration, we have the Euclidean distance (the
nearest means) classifier. In subsequent iterations we get
the regularized DA, and move further towards the stan-
dard Fisher DF. We can obtain the Fisher DF when we
have close non-limiting target values, e.g.,t1 ¼ ¹ t2 ¼

0.1. If n ¼ N þ N2 , p, we are approaching the Fisher
DF with a pseudoinversion of the covariance matrix.

4. Target values are, probably, the most important factor
determining the character of the learning curve. Starting
and final values of the learning step are very important
too. Other factors that affect the result are: the data, its
separability and its prior transformations; the regulariza-
tion or anti-regularization procedure used; the local
minima and flat area of the cost function in a multivariate
weight space; and, of course, the number of iterations. In
principle, we can obtain seven statistical classifiers in
SLP training.

5. In the thermodynamic limit, for two GCCM classes, the
average generalization error of the Euclidean distance
classifier (EDC), the standard (F) and regularized
(RDA) Fisher linear DF are expressed by the equations
(Raudys, 1967; 1972; Raudys and Skurikhina, 1994):

EP(EDC)
N < F ¹

dp

2
1�����
Tp

m

p( )
, EP(F)

N < F ¹
d

2
1����������
TmTS

p( )
,

EP(RDA)
N < F ¹

dl

2

����������������
1þ lTl

p ����������
TmTS

p( )
(5)

where

F{ a} ¼

∫a
¹ `

(2p)¹ 1=2j¹ 1 exp ¹ t2= 2j2ÿ �� 	
dt, N¼N1 ¼ N2

d*, d anddl are certain functions of the parameters of the
GCCM data model that determine the separability of the
pattern classes; the termTm ¼ 1 þ (2p/(d2N)) arises from
an inexact sample estimation of mean vectors of the
classes; the termTS ¼ 1 þ (p/(2N ¹ p)) arises from
an inexact sample estimation of a covariance matrix;l

is a regularization constant, the termTl is also a function
of parameters of the GCCM model. This term is trying
to reduce the negative influence ofTS. The first two
asymptotic formulae are rather exact forp . 10, while
the formula for the regularized DA is valid only for very
smalll.

6. In general, the GCCM class model is ‘‘unfaithful’’ for
EDC. Therefore we have a termTp

m ¼ 1þ (2pp=(dp2N)),
with 1 , p* , ` (Raudys, 1967). The termTp

m indicates
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that the small-sample properties of this classifier are
highly affected by true distribution densities of the
classes. This conclusion is also valid for otherpara-
metric classifiers: in ‘‘unfaithful’’ cases, the generaliza-
tion of parametric statistical classifiers depends on the
data; in certain cases, the parametric classifiers can be
extremely sensitive to the learning-set size.

7. In the multivariate spherical Gaussian case, the average
generalization error of the pseudo Fisher linear DF is
given by

EP(PF)
N < F ¹

d
������
r=p

p
2

1�����������������������������������������
1þ g2
ÿ �

Tm þ g2 3d2

4Np

s
8>>>><>>>>:

9>>>>=>>>>; (6)

where r ¼ N1 þ N2 ¹ 2 is the rank of the sample
covariance matrixS; g ¼

�����
Vd

p
/Ed; Ed and Vd are the

mean and variance of 1/d; andd is an arbitrary eigen-
value ofSchosen at random. The average generalization
error has a peaking behaviour: with an increase in the
learning-set sizeN, it first decreases, reaches the mini-
mum and then begins increasing. The minimum error is
obtained forN ¼ p/4 (n ¼ p/2) and the maximum error
(0.5 for equiprobable classes) is obtained forN ¼ p/2.

8. In the multivariate spherical Gaussian case, an increase
in the average generalization error of the zero empirical
error (ZEE) classifier trained by the Gibbs algorithm is
proportional to (p/N)S, where parameterS , 1. It
increases withd and the ratioN/p, and approaches 1
asymptotically as sample sizeN increases. The general-
ization error is:

MEP(ZEE)
N < F ¹

d

2
1��������������������������������������������������������

1þ (1:6þ 0:18d)
p
N

� �1:8¹ d=5
r

8>><>>:
9>>=>>;

(7)

This classifier can perform well even ifn , p. Forn q

p, the Fisher classifier performs better. The correct prior
information supplied in the form of the prior distribution
qprior(w) of the weights reduces the generalization error
dramatically.

9. Theoretical and experimental analysis of the Gibbs algo-
rithm in the case of spherical Gaussian data shows that an
increase in the margin width decreases the generalization
error averaged over a variety of classification problems
and learning sets. For one particular problem and one
learning set, simulations with the SLP exhibit peaking
behaviour.

10. The simulations with the spherical Gaussian and
GCCM data confirm that, depending on the learning
level, the small-sample properties of the non-linear
SLP classifier are determined by one of the seven
statistical classifiers analysed in this paper.

11. The overtraining effect is caused by two factors. First of

all, there is a difference between the cost function
surfaces, obtained from the learning-set data, and that
obtained from the test-set data (general population).
The greater the difference, the greater the overtraining
effect that can be expected. Another factor is the change
in type of statistical classifier that occurs with an
increase in the number of iterations. One of these clas-
sifiers appears to be the best one in the finite learning-
set size situation. Overtraining can occur when the
weights are small and the activation function acts line-
arly. Then we move from the EDC towards the RDA
and the Fisher classifier. Overtraining can also happen
later, when the weights are large and the activation
function acts non-linearly. Then we move from the
Fisher classifier towards the generalized Fisher classi-
fier, or from the ZEE classifier towards the maximal
margin classifier.

12. For the GCCM model with several eigenvalues of the
covariance matrix close to zero, the small-sample prop-
erties of the Euclidean distance, the zero empirical error
and the non-linear SLP classifiers with non-limiting
targets are determined by the intrinsic dimensionality
of the data. This conclusion does not apply to the
standard Fisher linear DF.

13. A purposeful, conscious control of the SLP classifier
complexity—obtained by determining optimal values
of targets, the learning step and its change in the train-
ing process, the number of iterations, addition or sub-
traction of the regularization term—all help to reduce
the generalization error. Correct initialization of
weights and transformations that simplify the data
structure are also useful. In certain experiments with
artificial data, we have achieved the generalization
error reduction up to 10 times or more.

3. Seven statistical classifiers

3.1 The optimal Bayes decision rule for classifying two
multivariate Gaussian classes that differ in mean vectorsm1

andm2, but share a common covariance matrixS, is given by
the following discriminant function (see, e.g., Fukunaga,
1990; McLachlan, 1992):

g(x) ¼ x ¹
1
2

m1 þ m2

ÿ �� �
9S¹ 1 m1 ¹m2

ÿ �
The classification is performed according to the sign of
discriminant function (DF). After inserting sample mean
vectors,x̄(1) and x̄(2), and the sample covariance matrixS
instead of unknownm1, m2 andS into the above formula, one
obtains the plug-in sample DF

gLDF(x) ¼ x9S¹ 1 x̄(1) ¹ x̄(2)ÿ �
¹

1
2

x̄(1) þ x̄(2)ÿ �
9S¹ 1 x̄(1) ¹ x̄(2)ÿ �

¼ wF
o þ x9wF
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where

wF ¼ w1,w2, …,wp

ÿ �
9 ¼ S¹ 1 x̄(1) ¹ x̄(2)ÿ �

wF
o ¼ ¹

1
2
wF9 x̄(1) þ x̄(2)ÿ �

(8)

x̄(i) ¼
1
Ni

∑Ni

j ¹ 1
x(i)

j

is a sample mean vector, and

S¼
1

N1 þ N2 ¹ 2

∑2

i ¼ 1

∑Ni

j ¼ 1
x(i)

j ¹ x̄(i)
� �

x(i)
j ¹ x̄(i)

� �
9 (9)

is a sample pooled covariance matrix, the maximum likelihood
estimate of the covariance matrixS of two Gaussian classes.
This linear classifier is called thestandard Fisher DF. In DA it
is sometimes called the Anderson classification statistics.

In the finite learning-set case, the sample mean vectors
x̄(1) and x̄(2), the sample covariance matrixS are inexact
estimates of unknownm1, m2 andS. Therefore the sample-
based classification rule is conditioned by a particular
random learning set. Its performance—a conditional prob-
ability of misclassification (generalization error)—will be
higher than that of the Bayes optimal DF. When prior prob-
abilities of the classes are different andN2 Þ N1, the sample
plug-in DF with weights (Eq. (8)) is not an optimal rule
among all possible sample-based classifiers. In statistical
pattern recognition, a Bayes approach for designing optimal
sample-based classification rules is developed. In this
approach,m1, m2 andS are supposed to be random variables,
and the prior distributionqprior(m1,m2,S) of these variables is
supposed to be known. Then we seek a posterior (predictive)
density of the vectorX, and we design a classifier for this
density estimate. For a uniform prior distribution ofm1, m2

and S, the predictive density was determined as (Geisser,
1964; Keehn, 1965)

f Xlx(1)
1 , x(1)

2 , …,x(2)
N2

,pi

� �
~

Ni

Ni þ 1

� �p=2

1þ
Ni x ¹ x̄(i)ÿ �

9S¹ 1 x ¹ x̄(i)ÿ �
Ni þ 1
ÿ �

Ni ¹ 2
ÿ � !¹ N1 þ N2 ¹ 3ð Þ=2

(10)

The use of the density estimate (Eq. (10)) to design the
classification rule results in a quadratic discriminant func-
tion. WhenN2 ¼ N1 ¼ N and the prior probabilities of the
classes are equal, this optimal ‘‘Bayes predictive classifier’’
is linear and becomes equivalent to the Fisher linear discri-
minant (Gupta, 1977). This means theFisher linear DF is
the optimal sample-based classification rule in the sense that
it yields the minimal classification error for a set of classi-
fication problems defined by a uniform prior distributionof
m1, m2 andS. No other sample-based classification rule will
yield a smaller generalization error.

If N1 andN2 are small in comparison with the number of

dimensionsp, then there arise problems associated with the
inversion of the sample covariance matrixS. There are
several ways to overcome this kind of difficulty. We
describe only three of them.

3.2 One of the approaches is to assumeS ¼ I ·j2 (j is a
scalar). This means we can assume the pattern classes to be
spherical Gaussian. Therefore, when classifying according
to the sign of the DF, one can omit the covariance matrix;
i.e., we have the following DF

gE(x) ¼ x9 x̄(1) ¹ x̄(2)ÿ �
¹

1
2

x̄(1) þ x̄(2)ÿ �
9 x̄(1) ¹ x̄(2)ÿ �

(11)

This classifier can be obtained from heuristic (ad hoc) con-
siderations, if we suppose that pattern vectors of each class
are similar among themselves and close to the ‘‘typical
member’’ of this class (i.e., the centre with sample mean
vector x̄(j)), and perform the classification according to the
distance to the mean̄x(j). Therefore this classifier is called
the Euclidean distance or the nearest means classifier. Note
that for a uniform prior distribution of the differencem ¼ m1

¹ m2, EDC is the optimal Bayes predictive classification
rule for spherical Gaussian patterns (Abramson and Braver-
man, 1962). This means that, in a variety of classification
problems defined by the prior distribution ofm, no other
sample-based classifier will perform better. It is very impor-
tant to remember this in the analysis of the overtaining
effect.

3.3 Another approach to overcoming difficulties asso-
ciated with the matrix inversion in regression and DA is to
use the shrinkage (ridge) estimate of the covariance matrix

SR ¼ Sþ lI

instead of estimate (9). HereI is thep 3 p identity matrix
andl is a positive regularization constant.

In this case the weight vector of the linear discriminant
function becomes

wRDA ¼ (Sþ lI )¹ 1 x̄(1) ¹ x̄(2)ÿ �
(12)

This procedure is calledregularized linear discriminant
analysis (RDA). When l, the regularization constant, is
extremely small, its influence is insignificant and we get
the conventional Fisher linear DF. Whenl is very large,
the influence of sample estimateS disappears and we have
the Euclidean distance classifier.

3.4 If N1 þ N2 ¼ n , p þ 2, the covariance matrix
becomes singular. Therefore, instead of the conventional matrix
inversion, use of apseudoinversionof this matrix is sometimes
suggested. The sense of the pseudoinversion of matrixK con-
sists of a singular value decomposition of matrixK :

TKT 9 ¼
d 0

0 0

" #
where

T ¼
t1

t2

" #
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is an orthogonal matrix such that

TKT 9 ¼
d 0

0 0

" #
(13)

andd ¼ t 1Kt 19 is anr 3 r diagonal matrix composed ofr ¼

N1 þ N2 ¹ 2 non-zero eigenvalues ofK . Thus, the
pseudoinverse ofK is

K p ¼ T9
d¹ 1 0

0 0

" #
T (14)

This classifier is calledthe Fisher linear DF with pseudo-
inversionor, simply, a Pseudo Fisher classifier:

wFpseudo¼ K p x̄(1) ¹ x̄(2)ÿ �
; (15)

where the data is centred a priori, i.e.,x̄(2) ¼ ¹ x̄(1), and

K ¼
1

N1 þ N2

∑2

i ¼ 1

∑Ni

j ¼ 1
x(i)

j x(i)
j

� �
9 (16)

3.5 A generalization of the Fisher criterionto obtain the
weights of the linear discriminant function was proposed by
Randles et al. (1978). They suggested minimizing

Tgen¼
1

N1 þ N2

∑2

i ¼ 1

∑Ni

j ¼ 1
J

tij ¹ w9x(i)
j ¹ wo�����������������

w9S¹ 1w
p !

(17)

wheret(i)j is a class index of the training pattern vectorx(i)
j :

t(i)j ¼ þ 1 andt(2)
j ¼ ¹ 1, andJ(«) is a non-decreasing odd

and non-constant function: e.g.,J(«) ¼ ( ¹ 1)i¹1 tanh(«) (q
is a positive constant). In fact, while designing his linear DF,
Fisher (1936) used the linear functionJ(«) ¼ «. The use of
the non-linear functionJ(«) is a generalization of the Fisher
criterion. Because of the saturation ofJ(«), the solution
becomes more robust to outliersthan the standard Fisher
discriminant. For numerical optimization of the above
criterion, the functionJ(«) should be smooth and differenti-
able. The properties of the DF are similar to the soft limiting
activation function (Eq. (2)) used in ANN design. In an
exceptional case, whereJ(«) is a threshold function, the
minimization of criterionTgen results in minimization of
the number of misclassifications in the learning set, i.e.,
the empirical error.

3.6 Most often, the objective of classifier design is to
obtain a discriminant function that yields the minimum
classification error. Thus, in training, usually one attempts
to minimize the number of vectors misclassified—the
empirical error. In statistical pattern recognition, one often
minimizes the cost function

Cost¼
1

N1 þ N2

∑2

i ¼ 1

∑Ni

j ¼ 1
J t(i)j , w9x(i)

j þ wo

� �� �
(18)

wheret(i)j is a class index of the training pattern vectorx(i)
j :

t(1)
j ¼ þ 1 and t(2)

j ¼ ¹ 1, and J(«) is a pattern error
function. If J t(i)j , w9x(i)

j þ wo

� �� �
is the threshold function:

J t(i)j , g
� �

¼
1 for g , 0

0 otherwise

(

we minimize the empirical error. However, this function is
not differentiable. In the adaline, one uses a quadratic func-
tion J(d) ¼ d2. It is important to remark that minimization
of this and other differentiable cost functions does not imply
minimization of the classification error. Amari (1967)
suggested using a function

v(d) ¼ arctand=d0

ÿ �
where d¼ lt(i)j ¹ w9x(i)

j þ wo

� �
l=
���������
w9w

p
is the distance

between the vectorx(i)
j and a discriminant hyperplane

w9x(i)
j þ wo ¼ 0, andd0 is a sufficiently small constant. For

smalld0, the functionJ(d) is similar to the threshold func-
tion, and roughly, we minimize the empirical classification
error. This leads to theminimal empirical error (MEE)
classifier.

The minimization of Eq. (18) is performed in an iterative
way. It is, in fact, a version of the generalized Fisher criter-
ion (Randles et al., 1978). Do-Tu and Installe (1978) sug-
gested changing a slope of the functionJ(d) so that, with an
increase in the number of iterations, this function would
gradually approach the threshold function and the cost func-
tion (Eq. (18)) would eventually minimize the empirical
error (a window function technique). A dozen algorithms
by other authors were also mentioned in Section 1.

3.7 When the zero empirical classification error is
obtained, the resulting discriminant function is no longer
unique. To obtain a unique rule, some additional criteria
are introduced that favour an increase in the distance
between the discriminant hyperplane and the learning-set
vectors closest to it. In one of the first known algorithms,
in order to find the weight vectorw, Vapnik and Chervo-
nenkis (1974) suggested minimizing the quadratic form

w9w (19)

under the constraints

w9x(1)
j $ D and w9x(2)

j , ¹D (j ¼ 1,2, …,Ni ; i ¼ 1,2)

where D is a positive constant, a bound for the margin
(‘‘generalized portrait’’ method).

To this end, they used quadratic optimization techniques.
After optimization a finite number of vectors, called ‘‘sup-
porting vectors’’, determine the position of the discriminant
hyperplane. In one of the latest algorithms, more neighbour-
ing learning vectors than the ‘‘supporting vectors’’ contri-
bute to determination of the final position of the hyperplane.
In this article, we call all the classification algorithms with
an increasing margin‘‘maximal margin’’ classifiers.

4. Weight and cost function dynamics in BP training

We demonstrate thatthe criterion (Eq. (3)) used to find
weights of the non-linear SLP classifier changes during the
training process. Let v̄i ¼ 1=Ni

∑
Ni
j ¼ 1 wo þ w9x(i)

j

� �
be

average values of a discriminantg(i)
j x(i)

j

� �
¼ wo þ w9x(i)

j .
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We use absolute values ofv̄1 andv̄2 as indicators that show a
similarity of the soft limiting activation function
tanh wo þ w9x(i)

j

� �
to the hard limiting threshold function.

Inspection of curve tanh(g) indicates that, for very small
absolute values̄v1 and v̄2, the valuesg(i)

j vary in the neigh-
bourhood of 0 (the zero point). Then the activation function
acts as a linear function. For extremely largev̄1 and v̄2,
contributions tanhwo þ w9x(i)

j

� �
of all learning vectorsx(i)

j
are close to either¹1 or þ1. Then the activation function
‘‘tanh’’ is actually acting like a threshold function.
Obviously, the values̄v1 and v̄2 depend on the magnitudes
of the weights.

Typically, during perceptron training, one starts from
very small weights and normalizes the data. Some authors
suggest having data values in the interval (¹1,þ1); others
suggest moving the centre of the data, 1=2 x̄(1) þ x̄(2)ÿ �

, to the
zero point and making unit variances of all the features. For
very small initial weights, the scalar productsg(i)

j x(i)
j

� �
are

close to zero. Therefore, during the first iteration, the acti-
vation function acts as a linear function, i.e.,o g(i)

j

� �
¼ g(i)

j ,
giving ]o(g)/]g ¼ 1. If h, the learning step, is small, we
obtain small weights and small values ofg(i)

j x(i)
j

� �
in sub-

sequent iterations. In fact, the activation function
‘‘tanh g(i)

j

� �
’’ will act as a linear function.

With an increase in the number of iterationst, the cost
function (Eq. (3)) tends to its minimum and the weight
vector w t to its optimal valueŵ, where the minimum of
Eq. (3) is obtained. We show that final average values
v̄i ¼ 1=Ni

∑
Ni
j ¼ 1g(i)

j depend on the target values.
Let the activation function be the linear function

o g(i)
j

� �
¼ g(i)

j , t(1)
j ¼ [1], t(2)

j ¼ ¹1, N2 ¼ N1 ¼ N and
n¼ 2N . p þ 1, so that the sample covariance matrixS is
not singular. Equating the derivatives

]cost
]wo

¼ ¹
1

2N

∑2

i ¼ 1

∑N
j ¼ 1

t(i)j ¹ wo ¹ x(i)
j

� �
9w

� �

¼ ¹ t1 þ t2
ÿ �

=2þ wo þ k1x̄(1) þ k2x̄(2)ÿ �
9w (20)

and

]costl
]w

¼ ¹
1

2N

∑2

i ¼ 1

∑N
j ¼ 1

x(i)
j t(i)j ¹ wo ¹ x(i)

j

� �
9w

� �

¼ ¹ t1x̄(1) þ t2x̄(2)ÿ �
=2þ x̄(1) þ x̄(2)ÿ �

wo=2þ Kw (21)

where

K ¼
1

2N

∑2

i ¼ 1

∑N
j ¼ 1

x(i)
j x(i)

j

� �
9;Ki ¼ Ni =ðN1 þ N2Þ

to zero, and solving the resulting linear equations, we can
show that for small weights (linear activation function), the
minimum of cost function (3) is obtained at

wo ¼ 0, w ¼ kS¹ 1Dx̄ (22)

where

k¼ 2= D2 þ 4(N ¹ 1)=N
ÿ �

Dx̄ ¼ x̄(1) ¹ x̄(2)

and

D2 ¼Dx̄9S¹ 1Dx̄

is the sample Mahalanobis distance. For simplicity, we
assumed̄x(1) þ x̄(2) ¼ 0. This assumption does not affectw.

Then the average values are given by
v̄i ¹ 1=Ni

∑
Ni
j ¼ 1g(i)

j ¼ 6 1= 1þ D2ÿ �
. We have lv̄i l ¼ 0.2

for D ¼ 1, lv̄i l ¼ 0.5 for D ¼ 2 andlv̄i l ¼ 0.8 for D ¼ 4.
The values̄v1 andv̄2 become close to the desired outputs 1
and¹1 for very largeD. In the case of anon-linear activa-
tion function, higher order statistical moments of the learn-
ing set affect cost function (3). Let us analyse the GCCM
data model and assume all sample statistical moments of the
learning setsX(1)

1 , …,X(1)
N andX(2)

1 , …,X(2)
N to be identical to

that of the GCCM model with the parametersx̄(1), x̄(2) and
S; i.e., density f X(i)

j

� �
¼ N X, x̄(i),S

ÿ �
. The optimal

weight vector for this model is the Fisher DF. Its weight
vectorw ¼ cwF and the thresholdwo ¼ cwF

o can be changed
arbitrarily by scaling by any positive constantc. However, a
change inc changes cost (3). We evaluate average valuesv̄1

and v̄2 where the minimum of the cost for the ‘‘tanh’’
activation function is obtained. The expectation of cost
function (3) with respect to the set of 2N random learning
vectorsX(1)

1 , …,X(2)
N is

EtXcost(w) ¼

∫
…

∫
cost w, X(1)

1 , …,X(2)
N

� �
f X(1)

1 , …,X(2)
N

� �

dX(1)
1 …dX(2)

N ¼
1
4

∫
t1 ¹ tanh c w9X þ wo

ÿ �ÿ �ÿ �2N X, x̄(1),S
ÿ �n

þ t2 ¹ tanh c w9X þ wo

ÿ �ÿ �ÿ �2N X, x̄(2), S
ÿ ��

dX (23)

A numerical minimization of Eq. (23) with respect to the
parameter c results in: forD ¼ 1 lv̄i l ¼ 0.25, forD ¼ 2 lv̄i l ¼
1, for D ¼ 4 lv̄i l ¼ 4, and forD ¼ 6 lv̄i l ¼ 9. We see that the
valuesv̄1, v̄2 and the actual similarity of the activation func-
tion tanh(g) to the threshold function depend on the separ-
ability of the learning set: i.e.,D, the sample Mahalanobis
distance. For close pattern classes we obtain small weights,
and therefore we cannot minimize the empirical classifica-
tion error; however, for distant pattern classes, with an
increase in the number of iterations, we minimize the
empirical classification error more and more exactly.

Three important remarks.

1. The sample estimateD2 is a biased estimate of the true
squared sample Mahalanobis distanced2:

ED2 ¼ d2TmTS (24)

where termsTm andTS have been defined by Eq. (5) in
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Section 2. Thus, for finite values of the learning-set size
N, we have higher separability of the learning sets. For
very small learning sets, whenN2 þ N1 → p, bothED2

andlv̄i l increase abruptly, and cost function (3) actually
starts minimizing the empirical classification error.The
conclusion that, for the soft limiting non-linear activa-
tion function and very distant classes, the weights can
increase without bound is easy to understand on the
basis of intuitive arguments. Let the empirical error be
zero. This means that valuesg(1)

j are positive and values
g(2)

j are negative. In order to minimize cost function (3)
the training algorithm will moveo g(1)

j

� �
to t1 ¼ þ1 and

o g(2)
j

� �
to t2 ¼ ¹1. This is possible only by increasing

the magnitudes of the weights. Obviously, the weights
will not increase without bound if lt il , 1.

2. While minimizing cost function (3) by the gradient-type
backpropagation algorithm, certain numerical difficulties
arise. In the case of small empirical error, the weights
become large,the neurone becomes aged and begins to
produce almost categorical answers: outputs
o wo þ w9x(i)

j

� �
are close to eitherþ1 or ¹1. Then the

gradient of the cost function is near to zero. Therefore in
BP training with constant learning steph, the training
process slows down and afterwards actually stops.In
order to force the backpropagation algorithm to adjust
the weights continuously and increase the margin, we
need to increase the magnitude of the learning step.
Analysis shows that, in order to ensure a linear increase
in the magnitude of the weights, the learning steph

should increaseexponentiallywith an increase in itera-
tion numbert:

h¼ hstart·a
t (25)

where a is a positive constant, slightly larger than 1
(e.g., in our simulation studiesa was taken between
1.001 and 1.3).
In the practical application of this approach, one faces
difficulties associated with the accuracy of calculations.
Very large magnitudes of the weight vector actually
cause zero values of the cost function, and the training
process stops.

3. If the empirical classification error is large (e.g., close to
or larger than 0.25), then we have small weights, and we
cannot minimize the empirical error. To force the classi-
fier to minimize the empirical frequency of misclassifi-
cation, we can add to the cost function (3) a ‘‘negative
weight decay’’ — l1w9w or þ l2(w9w ¹ h2)2, the so
called ‘‘anti-regularization’’ term (Raudys, 1995). This
term forces the learning algorithm to increase the mag-
nitude of the weights and, consequently, to increase the
actual slope of the activation function.

5. Seven types of statistical classifier in SLP design

5.1 In this section we show that, in BP training, one can

in principle obtain seven different statistical classifiers.
First, consider a case where at the beginning of training
the weights are small and the activation function acts as the
linear function. Thuso(g) ¼ g, and]o(g)/]g¼ 1. To obtain a
more general result, we temporarily reject the assumption
N2 ¼ N1. Then instead of Eqs. (20) and (21) we have

]cost
]wo

�����
wo ¼ wo(t)

¼¹ t1k1þt2k2

ÿ �
þ wo(t) þ k1x̄(1) þ k2x̄(2)ÿ �

9w(t)

(26)

]costl
]w

�����
w ¼ w(t)

¼ ¹ t1k1x̄(1) þ t2k2x̄(2)ÿ �
þ k1x̄(1) þ k2x̄(2)ÿ �

wo(t) þ Kw (t) (27)

whereK was defined in Eq. (16).
If the prior weights are zero, i.e.,w0(0) ¼ 0 andw (0) ¼ 0,

then after the first learning iteration one has

w0(1) ¼ h t1k1 þ t2k2

ÿ �
and w(1) ¼ w(0) ¹ h

]costl
]w(0)

¼ h t1k1x̄(1) þ t2k2x̄(2)ÿ �
(28)

If t2N2 ¼ ¹ t1N1, then

w(1) ¼ ht1k1Dx̄, w0(1) ¼ 0 (29)

This is is the weight vector of the Euclidean distance
classifier designed for the centred data, i.e.,x̄(1) þ x̄(2) ¼

0. The classification according to the sign of discriminant
function (29) is asymptotically optimal, when the classes are
spherical GaussianN(m i,Ij

2) and also in many other situa-
tions. It is a nice property of the single-layer perceptron that
it should become a comparatively good statistical classifier
just after the first learning iteration! To achieve this, one has
to fulfil conditionsE enumerated in Section 2. We see that
there are several arguments for using the centred data
x̄(2) ¼ ¹ x̄(1)ÿ �

with N2 ¼ N1.
5.2 In further analysis, we assume that these assump-

tions are again fulfilled,t(1)
j ¼ 1 andt(2)

j ¼ ¹ 1, and analyse
a change in the weight vector after the second and next
iterations. The usage of total gradient adaptation rule (Eq.
(4)) with gradient given by Eqs. (26) and (27) after the
second iteration results in:

w0(2) ¼ 0

and

w(2) ¼ w(1) ¹ h
]costl

]w

�����
w ¼ w(1)

¼
1
2
hDx̄ ¹ h ¹

1
2
Dx̄ þ Kw (1)

� �

¼ I ¹ I ¹ hK
ÿ �2

� ��1
2
K ¹ 1Dx̄

After further iterations,w0(2) ¼ 0,

w(t) ¼ I ¹ I ¹ hK
ÿ �tÿ � 1

2
K ¹ 1Dx̄ (30)
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where

K ¼
1

2N

∑2

i ¼ 1

∑N
j ¼ 1

x(i)
j x(i)

j

� �
9 ¼

N ¹ 1
N

Sþ
1
4
Dx̄Dx̄9

The matrixK is supposed to be non-singular and have an
inverse.

Employing the first terms of expansions

I ¹ hK
ÿ �t

¼ I ¹ thK þ
1
2
t(t ¹ 1)h2K2 ¹ …

and

I ¹ bKð Þ¹ 1 ¼ I þ bK þ …

for smallh and t, we obtain

w(t) ¼ thK ¹
1
2
t(t ¹ 1)h2K

� �
1
2
K ¹ 1Dx̄

¼
1
2
th I ¹ (t ¹ 1)hK
ÿ �

Dx̄ ¼
1
2
th I þ

1
2
(t ¹ 1)hK

� �¹ 1

Dx̄

¼
t

t ¹ 1
I þ

(t ¹ 1)h
2

N ¹ 1
N

Sþ
1
4
Dx̄Dx̄9

� �� �¹ 1

Dx̄

Assuming the matrixIl þ S to be non-singular, after some
matrix algebra we get

w(t) ¼ I
2

(t ¹ 1)h
N

N ¹ 1
þ S

� �¹ 1

Dx̄
tN

(t ¹ 1)(N ¹ 1)
kR (31)

where

kR ¼
2ht

D2
R þ 2h(t ¹ 1)(N ¹ 1)=n

ÿ �
D2

R ¼ Dx̄9S¹ 1
R Dx̄

and

SR ¼ Sþ I
2

(t ¹ 1)h
N

N ¹ 1

The weight vectorw (t) is equivalent to that resulting
from the regularized linear discriminant analysis
(Eq. (12)) with the regularization parameterl ¼ (2/
(t-1)h)(N/N ¹ 1). The regularization parameterl changes
during training: it decreases with increase in the number of
iterations.

5.3 The above expressions indicate that in training
whent → `

I
2

(t ¹ 1)h
N

N ¹ 1
þ S

� �
→ S, kR → 1

the resulting classifier approaches the Fisher DF. This
conclusion follows also from Eq. (22).

5.4 While deriving weight vectors given by Eqs. (22)
and (31), the sample covariance matrixSwas assumed to be
non-singular. When the number of learning samples is 2N ,
p þ 2, this matrix is always singular. Weight vector (30) can

be written in the following way:

w(t) ¼
1
2

∑t

s¼ 1
Cs

t h
s( ¹ K )s¹ 1Dx̄ (32))

This representation does not require the matrixK to be non-
singular. Let the orthogonalp 3 p matrix T satisfy
representation (13). Then

w(t) ¼
1
2

∑t

s¼ 1
Cs

t ( ¹ h)sT9 TKT 9ð Þs¹ 1TDx̄ ¼
1
2

∑t

s¼ 1
Cs

t ( ¹ h)sT9

d 0

0 0

" #s¹ 1

TDx̄ ¼
1
2
T9

∑t

s¼ 1
Cs

t ( ¹ h)s
d 0

0 0

" #s !

d¹ 1 0

0 0

" #
TDx̄ ¼

1
2
T9 I ¹ I ¹ h

d 0

0 0

" # !t !
TT 9

d¹ 1 0

0 0

" #
TDx̄ ¼

1
2
T9 I ¹ I ¹ h

d 0

0 0

" # !t !
TwFpseudo

where

wFpseudo¼ T9
d¹ 1 0

0 0

" #
TDx̄ ¼ K pDx̄

has been defined in subsection 3.4.
For small values ofh, with an increase in the number of

training iterationst,

I ¹ I ¹ h
d 0

0 0

" # !t !
→ I

Thenw (t) → wFpseudo(the weight vector of theFisher linear
DF with pseudoinversion). This conclusion is correct while
the inputsg ¼ w9x þ wo of the activation functionoðgÞ vary
in the linear interval. Consequently, we can obtain this
classifier when we havenon-limit target values (lt il , 1).

5.5 Suppose thetarget valuesdiffer from the limiting
values (e.g.,t1 ¼ 0.9 andt2 ¼ ¹ 0.9 for the tanh(g) activa-
tion function). Then, for correctly classified vectors, the
smallest deviations t(i)j ¹ tanh w9x(i)

j þ wo

� �� �2
will be

obtained for medium size weights. For the medium size
weights, the activation function becomes a non-linear func-
tion, similarly for the non-decreasing odd and non-constant
function J(«) in Eq. (17). Thus the minimization of cost
function (3) results in a linear classifier that is very similar
to generalized discriminant analysis, the Amari (1967)
algorithm, and the window function technique discussed
earlier in the previous section.

5.6 When one uses limit values of targets (t1 ¼ þ 1 and
t2 ¼ ¹ 1 for the tanh(g) activation function), we have seen
that for twodistantclasses we can obtain very high weights
after applying the minimizing cost function (3). In that case,
for all the training-set vectors,the activation function is
essentially acting as a hard limiting threshold function.
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This means that if one uses global minimization techniques
(which enables us to avoid local minima),we obtain a clas-
sifier similar to the minimum empirical error classifier.

5.7 When the number of dimensions exceeds the num-
ber of training samples and limiting values of the targets are
used, the proper training of a perceptron will always lead to
zero empirical error. Zero empirical error can also be
obtained also whenn ¼ N1 þ N2 exceeds the number of
dimensionsp, the distance between the pattern classes being
sufficiently large. Now let the empirical error be zero, the
targetst1 ¼ 1 and t2 ¼ ¹1, and denote byD(x*,w) an
Euclidean distance between the discriminant hyperplane
g(x) ¼ w9x þ wo ¼ 0 and the learning-set vectorx* closest
to it. Let D xþ

þ , w
ÿ �

be the Euclidean distance between the
discriminant hyperplane and the second learning-set vector
xþ

þ closest to it and different fromx*. Then, asymptotically,
with an increase in the magnitude of the weightskwk, the
ratio t þ

þ ¹ o w9xþ
þ

ÿ �ÿ �2
= tp

p ¹ o w9xp
p

ÿ �ÿ �2 diminishes to zero.
This implies that the relative contribution of the second
learning-set vectorxþ

þ , closest to the decision hyperplane,
becomes insignificant. The learning algorithm tends to put
the decision hyperplane further fromthe closestlearning-set
vectorx*. When the learning process is over, several vectors
{ x*} are at the same distance from the discriminant hyper-
planeg(x) ¼ w9x þ wo ¼ 0. Only these learning-set vectors
{ x ( p )} closest to the discriminant hyperplane (Cortes and
Vapnik, 1995 call them supporting patterns) contribute to a
value of the cost function and to the final determination of
the hyperplane location. Thus, we obtain themaximum
margin classifier.

6. Simulations

The aim of this section is to illustrate a variety of possible
statistical classifiers that can be obtained in SLP training,
and the ways of controlling the type of classifier obtained.
For this we use the simplest bivariate artificial data sets.
More details on classifier complexity control are presented
in Part II.

6.1 In Fig. 1 we show the distribution of two bivariate
Gaussian classes N(m i,S) — two small ellipses — contami-
nated with 10% additional Gaussian noise N(0,N). The
noise patterns are denoted by ‘‘p ’’ and ‘‘ þ ’’, and the
signal classes by two ellipses. Both signal classes have dif-
ferent meansm1 ¼ ¹m2 ¼ m and share the common
covariance matrixS:

m¼
0:10

0:05

" #
, S ¼

0:040 0:018

0:018 0:01

" #
N ¼

1:0 0:5

0:5 1:0

" #
We call thisdata set A1.

The SLP classifier with the sigmoid activation function
and targetst1 ¼ 0, t2 ¼ 1 was trained fors¼ 1000 iterations
by the standard BP in the batch mode, with learning steph ¼

5; the learning-set size beingN1 ¼ N2 ¼ N ¼ 250. In all the

experiments reported in this paper, we used centred learning
data; the starting learning vectorw (0) ¼ 0. After the first
iteration (boundary 1 in Fig. 1) we obtain EDC (boundary
2), yielding 22% of errors. After 250 iterations the resulting
classifier (boundary 4) became very close to the Fisher
linear DF (boundary 3) and yielded 12% of classification
errors. After a further 750 iterations with learning steph ¼

5, the decision boundary of the SLP classifier actually
became identical with the Fisher linear DF (boundary 3).
Only a significant increase in the learning step (up toh ¼

100) moved the decision boundary (boundary 5; after 1000
iterations) to boundary 6 of the minimum empirical error
classifier with 5.5% classification error.

6.2 More details on finding the maximal margin can be
found in Fig. 2. Each class here consists of a mixture of two
Gaussian densities (data B). Each subclass is distributed on
a separate line in the bivariate space. All four lines are
parallel. After the SLP training with an exponentially
increasing learning step, the decision boundary was placed
approximately halfway between the vectors of two closest
subclasses of the opposite classes. This gave the maximum
margin classifier. The remaining vectors from other two
subclasses do not affect the position of the decision
boundary.

6.3 The details on using the exponentially increasing
learning step in SLP training are presented in Fig. 3.
There we seethe process of change in the magnitude of
the weightsof the SLP classifier duringtmax ¼ 800 training
iterations with 100-variate GCCM data N(m i,S): m2 ¼

¹m1 ¼ m¼ (m1,m2,…,m100)9; randomly x2
1 distributed com-

ponentsm i were normalized (m9m ¼ 4) and ranked:m1 .
m2 . … . m100; j ¼ ððjij ÞÞ, j ii ¼ 1, wheni ¼ j and ¹ j ij ¼

0.3, wheni Þ j; N ¼ 100.
In this high dimensional case, we have two distant classes

and a comparatively small number of learning vectors.

Fig. 1. Distribution of two Gaussian pattern classes contaminated with
additional noise and positions of the discriminant lines: 1 — SLP after
the first iteration, 2 — EDC, 3 — Fisher linear DF, 4 — SLP after 250
iterations, 5 — SLP at the end of the training process, 6 — MEE classifier.
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Therefore, the learning-set vectors are linearly separable
and, after achieving zero empirical error, we obtain a certain
margin between the decision boundary and the learning-set
vectors. Two strategies of control of learning steph were
compared in this experiment. In the first test, the parameter
h was increased exponentially with the iteration numbert,
according to Eq. (25). In the second and the third tests, we
used two constant values ofh (0.01 and 0.1).

Obviously, the value ofh essentially affects the magni-
tudes of the weights and the margins. Consequently, it
affects the learning process and the statistical properties of
the classification rule obtained. In order to obtain maximal
margins, one needs to have large weights. To ensure weight

growth, we have to increase the learning step (see the pre-
vious section). Constant values of the learning step ensure
the quality of the learning process only for the first few
iterations, while the weights are small and the activation
function (Eq. (2)) is unsaturated.

6.4 If the empirical classification error is large (e.g.,
close to or larger than 0.25), then the small weights prevent
us from obtaining the minimum empirical error classifier
even when the targets acquire their limit values (þ1 and
¹1 for the tanh(g) activation function). To force the classi-
fier to minimize the empirical frequency of misclassifica-
tion, we add the ‘‘anti-regularization’’ term to cost function
(3). This technique is illustrated in Figs. 4 and 5. In this
experiment, we have the same kind of data as in Fig. 1;
however, the parameters differ:

m ¼
0:030

0:015

" #
, S ¼

0:040 0:0196

0:0196 0:01

" #

N ¼
1:0 ¹ 0:7

¹ 0:7 1:0

" #
We call thisdata set A2.

We should like to draw attention to two facts that, in
bivariate dataA2, we have a comparatively large number
of learning vectors (N1 ¼ N2 ¼ N ¼ 250) and that the
‘‘signal’’ and ‘‘noise’’ components have opposite correla-
tions. The variance of ‘‘noise’’ is much larger than that of
the ‘‘signal’’. Therefore the direction of the decision bound-
ary of the EDC (Graph 1) and that of the Fisher DF (Graph
2) differs substantially from that of the boundary of the
optimal linear classifier (Graph 3). In traditional training
(conditionsE, h ¼ 10), the boundary of the SLP moves
from (1) towards (2) for a while, and then rotates back a

Fig. 2. The SLP as a maximum margin classifier. Data are a mixture of
Gaussian subclasses on four parallel lines; 1 — the discriminant line after
training by varyingh (h ¼ 0.5·1.05t), only four vectors (from the closest
subclasses) contribute to the determination of exact position of the bound-
ary, 2 — the discriminant line after SLP training withh ¼ 0.5.

Fig. 3. Magnitude of the first weightlw1l and the marginM versust, the
number of iterations: 1 —h ¼ 0.01·1.05t, 2 — h ¼ 0.01, 3 —h ¼ 0.1.

Fig. 4. Distribution of two Gaussian pattern classes contaminated with
additional noise, and positions of the discriminant lines: 1 — EDC, 2 —
Fisher linear DF, 3— optimal linear DF, 4 — SLP with conventional
training, 5 — SLP with anti-regularization.
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little bit as long as it settles at (4). Graph 4 (after 5000
iterations) is close to the decision boundary of the EDC.
After the first iteration, the classification error is 0.41 and,
while approaching the Fisher DF, it first increases and after-
wards decreases, fixing itself at 0.42.

The use of the additional anti-regularization term
þ1.6(w9w ¹ 252)2 in the cost function does not change
the learning curve at the beginning but later on, when the
weights increase substantially, the decision boundary begins
approaching the optimal boundary. Graph 5 in Fig. 4 shows
the position of the boundary after 500 iterations. As a result,
we obtain 11% of classification errors, the same as that
obtained with use of the optimal linear classifier designed
to classify only the Gaussian ‘‘signal’’ patterns (Fig. 5). We
see, in the case of a large number of highly contaminated
learning-set observation vectors, that utilization of an addi-
tional anti-regularization term can pull the discriminant
hyperplane near to that of the minimum empirical error
classifier.

7. Conclusions

We have established that, during adaptive training, the
weights of the SLP classifier increase gradually, and one
can obtain seven statistical classifiers of different
complexity:

• the Euclidean distance classifier,
• the regularized linear discriminant analysis schema,
• the Fisher linear discriminant function,
• the Fisher linear discriminant function with pseudoin-

version,
• the generalized Fisher discriminant function,
• the minimum empirical error classifier and
• the maximum margin classifier.

The analysis performed indicates that, despite its apparent
simplicity, the SLP trained by adaptive optimization tech-
niques is, in fact, a very rich family of linear classifiers.
There exists no unique single-layer perceptron classifier.
On the contrary, there is a great number of classifiers that
can be obtained during training. We can assume that, in
principle, more variants on the known classifiers can be
obtained. Possibly, there exists a close link between multi-
layer perceptrons and statistical techniques, too. This is a
subject for further study.

Several means of controlling the learning process are
described in the literature. These means are associated either
with the cost function or with the optimization technique
used. The most popular cost function is the sum of squares.
Other types of cost function can undoubtedly originate more
types of classifier. Different regularization terms are fre-
quently added in order to control the solution obtained.

The most widespread optimization technique is the
gradient-type backpropagation algorithm. This algorithm
is controlled by weight initialization, the number of itera-
tions and the learning-step parameter. Adding noise to SLP
inputs and/or outputs is a popular approach to influence the
learning process. It has a similar effect to the utilization of
the conventional regularization term. In the present paper, it
has been shown that all the means enumerated influence the
type of classifier obtained in each training experiment. For
example, the number of iterations is an almost universal
factor for controlling the type of classifier. One of the alter-
natives to the BP technique is the conjugate gradient tech-
nique — a modification of the second-order (Newton)
method. For a linear activation function the cost function
(3) is quadratic. Then use of a second-order optimization
technique, such as the Newton method, can lead to the
Fisher classifier in a single iteration, avoiding the Euclidean
distance classifier, and the regularized DA. Therefore,in
this sense, gradient BP training can become preferable,
since it does not require an additional regularization term,
such as the ‘‘weight decay’’ term added to the cost function.

In order to get a wider range of classifiers in each training
experiment, in addition to a variety of known complexity
control techniquesfive newones were proposed:

1. moving the learning data centre, 1=2 x̄(1) þ x̄(2)ÿ �
, into the

origin of the coordinates,
2. zero weight initialization,
3. target value control,
4. use of the additional negative weight decay term called

‘‘anti-regularization’’ and
5. use of an exponentially increasing learning step.

All the factors enumerated act simultaneously, and often
(although not always) the influence of one factor can be
compensated by others. There are several directly uncon-
trolled factors. These are false local minima and high-
dimensional extremely flat areas of the cost function,
where the training process almost stops. Adding noise to
inputs of the perceptron or to its weights, as well as a

Fig. 5. The empirical and generalization errors versust, the number of
iterations: 1 — SLP with conventional training, 2 — SLP with anti-reg-
ularization.
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constant or temporal increase in the learning step, can help
to move the perceptron weight vector from these
inappropriate areas.

In each single training experiment, one cannot optimize
over all seven types of classifier. Which particular type of
classifier will be obtained depends on: the data, the cost
function to be minimized, the optimization technique and
its parameters, and the stopping criteria. If the conditionsE
are fulfilled (batch-mode training,̄x(1) þ x̄(2) ¼ 0, wv(0) ¼ 0,
w (0) ¼ 0, t2 ¼ ¹t1N1/N2), then, after the first BP step, we
always obtain the EDC. However, too high a value of the
learning steph can lead to a situation when, after the first
learning iteration, the activation function has already
become saturated and further training becomes impossible.
So we obtain only one classifier: the EDC.

In training with a small learning step, one always obtains
the regularized linear DA and approaches the Fisher classi-
fier. In zero empirical error, and in the case of limiting target
values, one skips the Fisher DF with pseudoinversion and
goes in the direction of the maximum margin classifier
directly. The standard Fisher DF or the Fisher DF with
pseudoinversion can be obtained if one uses non-limiting
target values (e.g.,lt il ¼ 0.8).

The maximal margin can be obtained only when the
learning sets of both classes are linearly separable, limiting
values of the targets are used, and at the end of the BP
training, a very large learning steph is used. Other necessary
conditions are the need to avoid false local minima and a
sufficiently large number of learning iterations.

The presence of a number of statistical classifiers appear-
ing in SLP training raises the problem of which classifier to
choose for practical use. From the statistical viewpoint,
these classifiers differ in their complexity. Consequently,
the choice of the ‘‘best’’ classifier depends on the learn-
ing-set size and on the complexity of the pattern classifica-
tion problem (the data). In Part II, we consider
generalization properties of the statistical classifiers
mentioned and that of the SLP, the overtraining effect,
and different means that can be used for complexity control
of SLP classifiers in situations with a small learning
sample size.
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