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Abstract

We show that during training the single layer perceptron, one can obtain six conventional statistical regressions: a primitive, regularized,
standard, the standard with the pseudo-inversion of the covariance matrix, robust, and minimax (support vector). The complexity of the
regression equation increases with an increase in the number of iterations. The generalization accuracy depends on the type of the regressiol
obtained during the training, on the data, learning-set size, and, in certain cases, on the distribution of components of the weight vector. For
small intrinsic dimensionality of the data and certain distributions of components of the weight vector the single layer perceptron can be
trained even with very short learning sequences. The type of the regression obtained in SLP training should be controlled by the sort of cost
function as well as by training parameters (the number of iterations, learning step, etc.). Whitening data transformation prior to training the
perceptron is a tool to incorporate a prior information into the prediction rule design, and helps both to diminish the generalization error and
the training time.© 2000 Elsevier Science Ltd. All rights reserved.
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the sum of squares functio#(c) = c2 In prediction, one
can use a scaled sigmoid activation functfges) = 1/(1 +

1. Introduction

Two most important problems in statistical data analysis
are prediction and classification (0, 1 loss). In the prediction
task, we are trying to predict the value of a continuous
variable, sayy, according to a set of predictors
(X1, X, 1y Xp) = x'. An example is a linear regressign=
W'X + Wp, where wo and w = (W3, W, ...,W,)" are the
weights of the regression equation. In order to find the
weights, one needs a training-set data X1), (Y2, X2), ---,

(Yn, Xn)- In the artificial neural network (ANN) approach to
find the weights, one minimizes a certain cost (loss) func-
tion, e.g.

Wy; — f(W'x; + wp)),

Mz

D

Z|=

Cost=
i=1

whereV¥(c) is a chosen pattern error (loss) function, &)l
a non-linear activation function. In the classification task we

Wi+ =W — 1

exp(—as)) — 0.5, wherea is a scaling parameter. 1{s) =

s, and ¥(c) = c2 we have a linear single layer perceptron
(SLP). Iff () is a non-linear function, we have a non-linear
SLP. Note, if the perceptron’s weights are small, all

valuess, = w'x; + wy are small too. Theri(s) = s, and,

practically, we have the linear SLP.

In the ANN approach, the weight vector is found in an
iterative procedure where the cost function is minimized.
One of the simplest procedures is the delta rule (back propa-
gation, gradient descent) where the weight vector is adapted
according to iterative rule

acost
ow

, 2

wheren is a learning-step.

In Part | (Raudys, 1998a) it was shown that in training,
the non-linear SLP classifier evolvesn the evolution

have 0-1 loss, i.e. the loss is equal 0 if the vector to be Process, the weights of the perceptron increase, and the
classified is recognized correctly, and the loss is equal to COSt function of the sum of squares changes gradually. If
1 if we have a misclassification. In the prediction problem, Certain conditions are satisfied, the decision boundary of

we have a continuous loss. The most popular loss function isSLP can become identical or close to that of seven regular
statistical classifiers: (1) the Euclidean distance classifier;

(2) the regularized linear discriminant analysis; (3) the stan-
dard Fisher linear discriminant function; (4) the Fisher
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linear discriminant function with a pseudo-inversion of the 2. Primitive, regularized, standard, robust and minimax
covariance matrix; (5) the generalized Fisher discriminant (support vector) regressions in statistical data analysis
function; (6) the minimum empirical error classifier, and (7)
the maximum margin (support vector) classifier. The 2.1. Standard regression
complexity of the classifier changes during the training
process. At first, we estimate only mean vectors of the Inorder to simplify analytical derivations in a major part
pattern classes, then gradually we begin to estimate theOf this paper, without loss of generality we assume that the
covariance matrix, and, at the very end of the training learning set data is “normalized”, i.e. the sample mean of
process, we use only highest order statistical moments. ~ vector

One may hope that in the prediction task (regression), we y
also have a similar evolution process. Up to now, it was [ ]
known that at the beginning of the training of the linear
single layer perceptron, we have the regularization and at. . . . .
the end, we have a standard sum of squares regressior%s equal to zero. For linear regressions, this assumption leads

; . i to Wy = 0. In the standard least square approach, we use a
(Sjoberg & Ljung, 1992; Wang & Venkatesh, 1994). In sum of squares pattern error functiagbi(c) = c?. After
the finite learning-set case, the generalization prediction . . =~ . T

o : : minimization of the sum of the squares cost function we

error of the standard regression is determined by a S|mpleObtain
expression (Davisson, 1965)

X

N W' = S3%Syy, (4)

2 _ 2
Eogeneraization™ Cideal N—p’ &) whereSyy andSy, are block components of a conventional
sample maximum likelihood estimate of the covariance

The above equation shows that the generalization errormatrix

decreases when the learning set dizencreases. Whei _

) . . ; : : Sy Zyx
is smaller tharp, the dimensionality, an asymptotic analysis s —

performed by a statistical mechanics approach shows that | 3xy  2xx

the learning CUfoUgredicnonZ f(N) has a peaking charac-
ter: whenN increases from 1 up fo the generalization error
decreases at first, and then begins to increase (for the predic[ y ]

of a vector

tion task see e.g. Bp 1996; Krogh & Hertz, 1992; and for
the classification task, Raudys, 1998b; Raudys & Duin,

1998). For the regularized regression obtained after few |, multivariate analysis, the weight vector (4) is obtained

first iterations, we have much more complex equatiqns as a conditional mean K] of the Gaussian vector
(Wang & Venkatesh, 1994). One may hope that while train-

ing the non-linear SLP, one can obtain a wide assortment of| Y
regression rules too. The objective of the present paperisto| y |

consider this problem more exhaustively. A thorough

unified analysis is most easy to accomplish in the simple For this, instead of true components of the covariance
SLP case. This analysis gives new information and ideas, matrix 3(we use sample estimates. We refer to this type
which help to understand the complex learning behavior of of regression athe standardone.

multilayer perceptrons. In Section 2, we present several

types of the linear regressions commonly used in statistical 2.2. “Primitive” regression

data analysis. In Section 3, we analyze regressions that can ) . ) ) .

be obtained while training the non-linear SLP by the stan- SOme investigators in the field of applied research are
dard back propagation rule (BP) and by using various types unfamiliar Wlt_h statistical methqu. They normalize the
of pattern error function?(c). In Section 4, we use standard data by making all sample variances pfand X to be
multivariate analysis techniques to derive the generalization €3ual to 1, and intuitively are using correlation coefficients
error formulae for the regressions discussed in the previousP&tweery and components of the vectéras components of
two sections. We show that there, similarly to the classifica- the weight vectow. In this case, we have a weight vector

tion task (see e.g. Raudys, 1967, 1998b), the intrinsichRn\A -3 5
. . . — Xy ( )

dimensionality of the data, as well as components of the

optimal weight vectow” play an important role. In Section We will refer to this type of regression as theimitive

5, we discuss tools and criteria which can be used to control regressionNote, if 3 = |, then in the multivariate Gaussian
the type and complexity of the regression equation obtainedcase, with an increase iN, the learning-set size, this
while training the SLP. In Section 6, we present a discussion approach leads to the optimal prediction rule. Otherwise
and concluding remarks. we will obtain a bias.
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2.3. Regularized regression mates of the mean and the covariance matrix one can use
WhenN, the number of the learning-set vectors, is small, Z Y (XX
one cannot invert the sample covariance méx. One of AROBUST = J and
the possibilities to overcome this kind of difficulty is to add Z Y (XD
small positive constants,, to all diagonal elements of the J
matrix Scx (Harley, 1963, 1965; Hoerl & Kennard, 1970). R R /
This isregularized regressiofRR): A ]Z Y (XDXj = ArosusD(Xj — Arosus?
2 ROBUST — B
WRR = (Sex + 1) 1Sy, 6) ]Z y(X))
(7)
wherey(X)) is a weighting factor, which decreases mono-
2.4. Standard regression with a pseudo-inverse tonically with increase in distance

When the sample siz is smaller thamp, the number of ~ D(Xj, Arosus? = (Xj — ArosusD (Xj — firoBusD-
featurqs, the matri&x b.ecomes si.ngullar. An alternati\_/e o eor example
regularized regression is tgnore directionscorresponding
to zero eigenvalues. For this we have to perform a singular ¥(Xj) = 1 if D(Xj, firogus? < 2p, and D(Xj — firogus?
value decomposition 08y : Syx = TDT'. Let d be the
r xr diagonal matrix corresponding tonon-zero eigen- = UD(Xj — Arosusp Otherwise
values inD, andr be the rank ofS(x. Then the pseudo-

inverse of the matrixSyy is defined as . ,
2.6. Minimax (support vector) regression

Sxx = T[ d* 0 ]T/. Real world problems exist where one cassumehat in
0O 0 the linear modely = wx’ + wy + £, a noise¢ is a random
variable distributed uniformly in an unknown interval
Regularized regression can also be expressed in terms of —ab). In such cases, instead of minimizing the sum of

eigenvalues and eigenvectorSyy + IA = T(D + IA)T'. squares cost (1), some researchers mininazenaximal
Thus, in regularized regression, we are adding constant deVIatlor;rgdfictgarmng-set observationg from predicted

. . A~/ . .
to all eigenvalues of matri$yy. valuesy; =W'X + Wo, j =1,2,...,N. This type of
regression is calleéd minimax regressianOnly a small

number R) of most distant vectorXsyi, Xsvz, ---» Xsvrs
2.5. Robust regression determine a position of the prediction equatipa W'x +

Wy. TheseR vectors are referred to asipporting vectors

In various real world problems, sometimes we have atypi- Then the prediction (regression) rule is caléegbport vector

cal training samples where one or several components areregression It is analogous to the support vector classifica-
recorded with errors or affected by some abnormal noise. Intion rule (see e.g. Cortes & Vapnik, 1995) and SV regression
statistics, these atypical observation vectors are called(Drucker, Burges, Kaufman, Smola & Vapnik, 1996).
outliers. The outliers affect the estimates of the mean vector

and the covariance matrix of _ i .
3. Evolution of the SLP in the training process

[ y ] 3.1. Primitive regression
X

Consider the iterative gradient descent training procedure
and reduce the prediction accuracy. There are a number of(2) of the linear single layer perceptron where a sum of
techniques calledrobust statisticsto deal with such  squares cost function
problems (see e.g. Huber, 1981). In a regular robust N
approach, instead of the standard maximum likelihood esti- cogt— 11 > i - w2, (8)
mate of the matrix 2N &

Sy Sx is minimized. In the above equation, we added 1/2 for
= [ ] cosmetic reasons, and according to the assumptions
S)(y S)(X

N

N
Zyi =0, in =0,
i=

one uses a robust (weighted) estimate. As the robust esti-=;
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we have skipped the threshalg. Then

cost _ 1y
( ZXM N Z XiW(t))

= —Sxy T SxxW)» 9
and
Wiir1) = Wiy T 1(Sxy — SxxWiry) = (I = nSxx)Wty + 1Sxy-

(10

Let us start training from zero initial weights, i, = 0.
Then after the first iteration we have

The above equation indicates that fge= 1 after the first
iteration we obtain primitive regression. Let now, prior to
training, we performa linear transformation of the data
Z = FX, whereF = D"Y2T’, andD is thep x p diagonal
matrix composed from eigenvalues of mat8yy, andT is
the px p orthonormal matrix of the eigenvectors 8fy.
Then after the first iteration

%JZZM:

and the prediction equation

m _ _
Wy = N > DTHETXpy; = nD TSy,
]

Y(Z) = Z'Wyqy = n(X'TD D" Y2T'S = X'nSxSyy

= nX /WST

(12)
whereWw®" has been defined in Eq. (4).

Thus, forn = 1, after the first iteration in the transformed
Z space, we obtain the standard regression in the original

S Raudys / Neural Networks 13 (2000) 507-523

For smalln, we can use only the first terms of Eq. (13)

t t 1
w = (1 = 2SSy = tll — A0Sy,
14

wherei = [(t — D)n/2].

Use of an expansiofl — ASyy) > =1 + ASyy — ... for
very smallA results in
Wy = 2 (Sxx + AD7L 1

® = T4 XX ) S(y~ (15

For small (andt too) the resulting weight vector is
proportional to that of the regularized regressitf (Eq.
(6)). This means, after the first few iterations we have a
notable regularization (large = [2/(t — 1)77]). The degree
of regularization diminishes monotonically with increase in
t, the number of iterations.

3.3. Standard regression

Eq. (15) is valid only whem = [(t — 1)1/2] is small. In
addition, it does not show the behavior of the weight vector
when the number of iterations increases without bound. Let
the learning step diminish with increase in the number of
iterations with a certain speed. Then we can arrive to a
minimum of the cost function (see e.g. Amari, 1967). Equat-
ing (9) to zero results in

Wit—oo) = SXXSXy

i.e. the standard regression for the centered data.

AST (16)

3.4. Standard regression with the pseudoinversion of the
covariance matrix

In Sections 3.2 and 3.3, we have assumed the sample
covariance matrixSyx to be non-singular. Whep, the

space. This is an important conclusion, which can be used todimensionality of vectoK, exceeds\, the number of learn-

incorporate additional information (statistical hypothesis
concerning the distribution model of vectdf) into the
perceptron design. Actually it is a way how to integrate
statistical and neural network approaches to design the
linear prediction equation.

3.2. Regularized regression

Consider the learning process further in the second and
following iterations. After the second iteration we obtain

Wi = (211 — 7°Sxx)Sxy»  and further

(3Bl — 30’ Sex + 1°S%0)Sxys

W) =

t
Wy = Zlct%—lf’lnsﬁ*xl)&y =1 — (I = 7S¢ 1Sxx)Sxy
13

ing examples, this matrix becomes singular. Let the rank of
Sxx ber, and the singular value representation

Sx T[d O]T/
X — O O s

whereT is the orthogonal eigenvector matrix, atither X
r diagonal eigenvector matrix correspondingrtaon-zero
eigenvalues 08yxy. Let us denote

0

v=tx=|" g | ¢
= _I:U2:|’ Suu = T Sxx _[O 0
Svy

Suy ]

whereV is r-variate vector column. Utilization of the repre-
sentation (13) gives that after ttté iteration, the regression

Suy =T'Sy = [
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5

3.5. Robust regression

Up to this moment we have considered the linear single-
layer perceptron. Consider now then-linearSLP trained
with the following cost function

11 P 2
Cost= 5N é(f(yi) fw'x; + wp))7, (18

wheref(s) is a non-linear activation function which satu-
rates wherjg increases (again we assume sample means,
andX, to be zero). For example

1

f(S) == Te_as _05, (19)

where a positive scalar(controls the degree of non-linear-

Fig. 1. Robust SLP regression: 1—the standard regression; 2,4—Robustity—the proportion of observations with reduced influence

SLP (18) witha = 0.3, anda = 6 (Graph 4); 3,5—Robust SLP (22) with
a = 0.3, anda =5 (Graph 5).

equation

y(t)(X) == X/W(t) = XITT /W(t)

t
=X'T Y C=D)" n'(T'SaM HT'Syy
s=1

t
= V'Y C-1 n%d s, 17)
s=1

Representation (17) means that in this (singular) case, the

iterative search for the weights of the perceptron is
performed in a subspace ofeigenvectors corresponding
to r non-zero eigenvalues &x. This is a more condensed
and rigid proof than that presented in the first part of the
paper (Raudys, 1998a). This proof is also valid for the coef-
ficients of the linear classifier obtained while training the
SLP classifier in the very small learning-set case.

-2 -15 -1 -0.5 0 05 1 15

Fig. 2. Minimax (support vector) regression: 1—the standard regression,

2—the minimax SLP predictor fax = 10; A, B, C—supporting vectors.

while determining the weights of the regression.

The non-linear activation function diminishes the influ-
ence of overly small and overly large valuesyofas well as
w'x; + Wp) and reduces the influence of outliers distant from
y=(UN)Y,y andw'X, (X = (UN) Y X;). In comparison
with standard robust regression (see Section 2.5), an effect
of only a portion of the outliers is reduced.

Another possible cost function, which can be used to
obtain the robust regression is

118 ,
Cost= 5 & ; Pay; — (W'X; + Wp))), (20)

where and¥ (s) is a non-linear pattern error function, which
saturates where a differencg = |y; — (W'x; + wp)| is
large. The positive scalar controls the degree of non-line-
arity—the proportion of ignored observations (robustness).
An example of the robust pattern error function can be

{1—cos(s) if —m=s=mw

otherwise

(8) = 21

This cost functions ignores observations with large
prediction errors. Whewm is small almost all observations
contribute to the regression coefficients. Wherns large,
only a proportion of observations is taken into account. In
Fig. 1, we present an example of the use of adaptive robust
regression. The Gaussian strongly correlated data is
contaminated by Gaussian large variance noise. We see
the standard regression (line 1) fails to find the right predic-
tion function. Robust adaptive regression with cost (18) and
a =6 performs much better (line 4). Robust adaptive
regression with cost functions (20) and (21) amd=5
(line 5) practically ignores all atypical observation vectors,
but fails to do this whernx(is small (line 3).

3.6. Minimax (support vector) regression

In order to minimize the maximal deviationly; —
(W'X; + Wp)| among allN training vectors, one can use the
cost function (20) with the activation function whose value
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&(s) increases enormously witd. An example can be rewritten in a following way:
-1
2

S) = explas®) — 1. 22 . 1 1 N
o) = exp(as?) @ (N ijx’,—) (NZXJ(X'iW . g,->)

A relative contribution of each learning vector into the . .
sum (20) is determined by a scaling coefficianiand the -1
distancely; — (W'x; + wp)|. Learning vectors with small > XX > X¢ (24)
deviationdy, — (W'x; + wp)| have zero or very small contri-

bution into the cost function. In a limit, wheteis large, and

the training process finishes, only a small number of the ~ Then for vectorty, X")' the prediction error

most distant vectors contribute into the cost function. There-

fore, only a small number of training vectors determine the

values of the regression coefficients. We refer these vectors -1
(n3) (3374)

Yored = Y = X'W—X'w" —g=X'W-w") — ¢

assupporting onesln Fig. 2, we demonstrate a utilization
the SLP to obtain the minimax (support vector) regression.
In this example, the variabbeis Gaussian, positive devia-
tions¢ of variabley = x + &are distributed uniformly in the Taking into account that for independent learning-set
interval (0,0.5), while negative deviations appear in the Vectors
interval (—4,0). Only three training vectors (A, B, and C) 1
serve as the supporting vectors. We see a notable differencd=X¢ = 0, EN D> Xy =0,
between the standard and minimax regressions. I

In order to find the maximal deviatiomg — (W'x; + wp)| 0 ifj~i
exactly we need to use large values. Two numerical  Eg¢ —{
problems arise. First of all, large values cause many
local minima of the cost function to appear in the multi-
variate weight space. In addition, for large the conver-
gence of the algorithm becomes unstable. One needs ( Z )‘1 N

XX

o? ifj=i

and

significant effort in order to choose the proper learning- E N—p—1T
step value. Our experiments have shown that a good strategy P

is to increasea with any increase in the number of -
the expected square prediction error

iterations.
ES%TANDARD
-1
izati 1 1
4. The generalization error - E{X/(N ZX,—X/,-) (W Z:Xjfjfixi)
J 1)
In order to obtain an explicit formula for an expected .

square prediction error £ = E(y — Yped® of the first 1 D\ 2 p
four linear predictors obtained in the linear SLP back propa- | N inx i) XprES =01 N-p-1)
gation training we assume

(25
y=XW+wp+§ (23 The result does not depend BnExpression (25) was firstly

obtained by Davisson (1965).
wherew ™ = (W, Wa, ..., Wp)', W, are true weight valuesg
is a random Gaussian Bi(X) vector, and{ is independent 4.2, Primitive regression
zero Gaussian 0,0%) noise. Moreover, in order to
simplify the analysis assumg= 0 andX = 0. Then for The weight vector

the linear models we hawi, = 0.
1 .
W PRIM _ *
N ZXJyJ (ﬁ > XX W+ fi))
i

= SW " + Sy,

where

~ 1 l l
WSTAND _ ( ZX ) ].ijyj’ Syx = N ZXJ-X(, Sxe = N ZX,{].
j J

4.1. Standard regression

For model (23), the weight vector
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The prediction error matrix X, and on the optimal weight vectav®. If the
. PRIM o covariance matrix ¥ =1, this term becomes
Yored —Y = XW 0 — X'w — £ (UNYo%(p + 2w w").
= X'(SyxW™ + Syo) — X'w’ — & Let p be a multiple correlation coefficient. It is easy to
find
= X'(Syx — hw™ = X'w" — & -
proe o TP
Then the expected square prediction error wow 1-p2
Ee? = E tr{w"(Sxx — DXX'(Sxx — DW'* + S¢S 3 XX} Then
+ E&% 1, o2p?
Tg= — +2 .
B N o (p 1— P2

By means of standard methods of multivariate statistical
analysis, and after some simple but tedious algebra, we \ye see that the sensitivity of primitive regression to the

derive learning-set size depends of the true multiple correlation
Eammve = 02 + Ta + Ta, (26) coefficient. For standard regression, we had an analogous
term
where
Tgtand: 0_2 _ p i
Ta = WE(A — W, N-p-1
1 which does not depend on the multiple correlation coeffi-
Tg = Naz{tr (A%) + W(A? + tr(A%)Hwi}, cient.

In the small learning-set size case, when dimensionglity
A is thep X p diagonal matrix composed from eigenvalues of the vectorX is close toN, the termT5®"%is higher than
of 3, such thal 3I" = A, I is the orthonormal eigenvector the termTg. For large N, however, the terngt""”d can
matrix of 3, and become lower thafg. In the small learning-set size case,
this means that primitive regression can outperform stan-

Wi = AV TW = Wy =wp = = wy), dard regression. Here we can conclude that in such case, itis
To obtain Eq. (26) we had to prove the following three not worth t_raini.ng the perceptron fqr many iteratioqs. Onthe
equalities: contrary, in situations where primitive regression loses
against standard regression, i.e. in the large learning-set
E ZU-U( A2 ZU-Uf — Ntr(A%)] + N(N + 1)42 size case, it is worth training the perceprton for many
— — ! ’ iterations.
In situations withy, # |, the difference between standard
tr(SW W) = trwiwls), ar_\d primitive regression can become particularly large. In
this case,
and ' / * 1% * O-sz
tr(S2wW'wW*) = tr(AWEWE+) = WE+AWE, WEHWE = W IW" = 12
where U;,U,, ....Uy are independent random Gaussian | order to observe an influence Bfandw;: on the general-
N(O,1) vectors. ization errorlet us analyze a model with the following
The eXpI’eSSion (26) ShOWS the pl’ediction genera”zation Constraintson eigenva|ues Of the Covariance matﬁxand
error is composed from three terms: on components of the vector;:
e o>—aterm which characterizes the variance of noise in S =1 8..=5,=k
the model (23)—this term is fixed and does not depend ' P '
on the learning-set size; op

o Tp =WE=(A— I)>wi indicates the price we pay for W= JI=pDI+ (p- DK’
ignoring estimat&yy = (1N) 3 x;x'; of the covariance
matrix 3 (in the standard regression we do not ignore Wz = W3 = -+ = Wy = Wik,
Skx, and do not have this term). The teffa is non-
negative. If3 =1, we haved = |. thenT, = 0;

o T = (UN)a{tr (4%) + Wrx(A% + tr(AHDwi},  indi-
cates the influence of the learning-set size. Contrary to
the generalization error expression for the standard
regression (25), this term depends both on the covariance A. A model where the largest eigenvalué) of the

This model is determined by two parametégs and k.

Results of numerical calculations performed foe= 50,

p=0.9, andN = 60 are presented in Tables 1 and 2.
Consider two particular cases:
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Table 1
The bias term in Eq. (26)/T, for differentk, andks (p = 50, p = 0.9)

Ka\Ks 0.001 1 1000

0.001 0.0001 0 (no bias) 0.75

0.1 0.55 (case Al) 0 (no bias) 116.2

1.0 1.27 0 (no bias) 201.4 (case B1)
1000 1.29 0 (no bias) 203.4

covariance matrix¥ is much larger than the other ones,
and when the first componenty) of the weight vector
wg (in the direction of the largest eigenvalue Bj is
much larger than the other ones (e.g. a case I§%=
0.00%1, andk, = 0.1). Then we have at most a small
bias (0.55). In the small learning-set case, primitive
regression(vEs3zumve = 1.59) outperforms the stan-
dard one dramatically (fop =50, N =60 we have
VEeZranparp = 2.56).

B. Models of the data where primitive regression
performs badly (large eigenvalues, ..., 5, and large
weightsw,, ..., w,). For example, fok; = 1000 anck,, =

1, (a case Bl), we have (VEgiqumve =
2909, andvEe2 \\parp = 2-56. This theoretical analy-
sis can unveil situations where primitive regression
performs well. In such cases (e.g. cases wHerek,,
andN are small), is worth training perceptron only for a
small number of iterations. Eqgs. (25) and (26), however
indicate that with an increase in the learning-set size, the
situation can differ. E.g. foN = 300 for the case Al
we havevEsgayparp = 1-10. though, VEsZg yimve =
1.56.

In Fig. 3a and b, we presesitmulation results with the
linear single-layer perceptrarFig. 3a is obtained for data
model Al. ForN = 60 (Graph 1) while training the SLP
from zero initial weights withn = 1, after the first iteration
we obtained the generalization error 1.55. After 150,000
iterations, we obtained the generalization error 2.53. Both
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Fig. 3. Generalization error of linear SLP as a function of the number of
iterations: (a) data A: 1-N = 60, 2—N = 300, (b) data B: IN = 60, 2—
N = 300.

the first iteration, we should obtain the generalization
error 1.08, and an essentially higher error (2.56) at the end
of the training process. This means that after the first itera-
tion we have (256 — 1)/(1.08 — 1) = 20 times smaller

values are very close to the theoretical expected valuesincrease in the generalization error than at the end—a

EPRIMITIVE — 159, and ESTANDARD — 2.56. For N = 300
(Graph 2), after the first iteration we have 1.55, and after

2000 iterations 1.10, very close to 1.56 and 1.10, the theo-

retical values for primitive and standard regressions. We
see, for such type of data primitive regression is useful.
Table 2 shows that particularly high effectiveness of the
primitive regression (a brief training) comes to light if
data withk, = 0.001 andks = 0.001 is used. Then after

Table 2
The generalization errquﬁpwmVE (p=150p=09,N = 60)

ka\Ks 0.001 1 1000
0.001 1.08 2.34 207.3
0.1 1.59 (case Al) 2.34 238.7
1.0 2.29 2.34 290.9 (case B1)
1000 2.31 2.34 292.4

tremendous overtraining! Smad} is characteristic of data
with small intrinsic dimensionality (the dimensionality of
the subspace where data poiKts X,, Xs, ... are situated).
Table 2 shows that for smaltk (low intrinsic dimensional-
ity) we have the lowest increase in generalization error. It
agrees with a similar conclusion obtained for an analogous
classification algorithm—the Euclidan distance classifier
(see e.g. Raudys, 1967, 1998b)—in both algorithms, the
Euclidean distance classifier and primitive regression, only
sample means are used to find the weights of the algorithms.
Table 2 shows that there also exist situations where primi-
tive regression and brief training of the SLP is not a good
choice. For example, for the data model B with= 1 and
ks = 1000 (a high intrinsic dimensionality case) aNd=
60 from Table 2, we findprmimive = 2909—a very high
generalization error, considerably higher than the error of a
untrained SLP with weight vectow = 0. Training with
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1 =1 leads toege, = 273 after the first iteration, and to a

515

of the true covariance matri¥, S, = A~ Y2I"'S, I'A 2

divergence of the back propagation algorithm later. Use of (it is a random Wishart WY,1) matrix).

much smaller learning stepp = 0.001 results in curve 1 in
Fig. 3b with g4e,= 2.75 after 4000 iterations (recall, for
standard regression the expected prediction
&stanDarD = 2.56). For learning-set siz& = 300 theory
StateSSSPR|M|T|VE = 223 and ESTANDARD — 110 BP train'

ing of the SLP withn = 1 after the first iteration resulted in
ggen = 229, and further divergence of BP training. For small
learning-step(n = 0.01) we have no divergence: after the
first iteration we obtained a much smaller generalization
error, egen= 1.34, and after 400 iterationsgge, = 1.09.

For this type of the data, experiment confirms the theoretical

error

I' is the eigenvector matrix o¥, in singular value repre-
sentationy = I'AI", and

It is known (see e.g. Raudys, 1972) that
-1 N
ESXX—IiN_p_l, and
_ N3N — 1)
ESZ = | .
S N TN —p-DN-p-3)
Therefore

conclusion: the SLP should be trained until the end: no early g,2

stopping is necessary.
Two conclusions follow:

—for the high-dimensional Gaussian data the starting

(after the first iteration) and the final generalization errors
of the linear SLP can be predicted with fairly high
accuracy,

—the learning-steps value is an important tool to

control convergence and the generalization error of the

perceptron.

4.3. Regularized regression

The weight vector
-1
R (2 xxt v L$x
W= (G 2XXG I G 2 Xy
i i

= (Skx + 1) H(SxxW" + S

Use of an expansiofSyy + 1A) "1 = Syt — ASc2 + ---and
rejecting terms of ordek ? and higher, for very small we
can write:

¢ the prediction error

ypred —y= X/WRR
= X"(Sxx + IV “HSxxw” + Syp) — X'w' — £

—AX'SyxW" + X'SixSye — ASuk Sy —

- X'w* — ¢

¢ and the expected square prediction error
Ee? = E tr{[SxxSxeSxeSxx — 2ASxxSxeSxeSxiIXX '}
+EEZ = 0% + %02 tr E{tr(Syx3) — 2ASx2 3}

=¥l + %(tr ES, 1 — 2AES 247 1Y)},

where A is a diagonal matrix composed from eigenvalues

tr(A"HN(N — 1) )

—o?1+ P —2
"( N-p-1 “(N-pN-p-DH(N-p-3

= E&stanparp + Ths (27)

where

tr(A"HN(N — 1)
(N=-p(N—-p—-DH(N—-p—3)°

T, = —2A02

Eq. (27) indicates that generalization error depends,on
and parameter¢d 1) of the distribution density function of
X. The termT, tries to reduce the cost we need to pay to
estimate the covariance mati$y. The simulation experi-
ments reported in Section 4.2 confirm that while training the
SLP and moving from primitive regression towards the stan-
dard one we have smaller generalization error. This is a
consequence of the influence of the third term in Eq. (27).

4.4. Standard regression with the pseudoinversion of the
covariance matrix

The weight vector
- gL
0

WPINV =T

01
]N ZT’xj(x’jTT’w + &)
]

1 -
(wn) NEPERE
0 0

wherewy;, Uy; are composed from the firstcomponents of
vectors

W
wr=Tw" = ( ™
Wr2
U,/

Ui = T'Xi
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Table 3 Let the coefficient of multiple correlation for model (23)
Expected values ; dj’l of the sum of inverse eigenvalues of the Wishart  pa equal top. Then for case (a)
W(N, Ip) random matrix fop = 20

2
N 2 4 6 8 10 12 14 16 18 Wy =Wy = - =W, = op\/p(1—p),

EYd ' 024 108 273 578 112 207 382 876 274 and forcase (b)

Wy = aph/p(l — p?), W, = - = w, = 0.

respectively, and” = ((t;s)) and WhenN < pthe eigenvector matriX becomes a random
d 0 0 matrix. From the orthonormality conditiodTT' = 1) for
! largep, we have
4 0 d, ... O EZt.t-_ Yp ifj=i
4 silsj 0 ifj?éi.
0 0 .. d

Consequently, for both cases (a) and (b)
has been defined in Section 3.4. To prove the above repre-

2 2
sentation, we have used the representation Tg = 02% S wiw ED ttg = 02% (1p _Upz)_
0 ij s

T/% XX T = % >y = [ ] The term Ty = o?(UN)EY;d; ! characterizes eigen-

J J 00 values of the singular randoi® matrix, having Wishart

Then the prediction error for vectoy, X')’ W(N, 1) distribution, and can be evaluated by numerical
methods. In Table 3 we present several values of Hjgp)

Yored = Y = XWPNWY — xwt — ¢ found forp = 20.

We see that the expected valueg}:‘dj_1 increase witiN
1 _ , exponentially. We can use these values to calculate theore-
= UL = Ddtuyg | - Uow, — £ : - ot
R NP 1Sj 2Wr2 = &, tical estimates of the generalization error of the standard
! regression whel < p

and the expected square prediction error

1_o- 1 P N
E8|§|NV=O'2+O'2NE2dJl+O'2 P (1_ —)

2 1 -1 I 41 I N (1 B pz) P
Ec?=Etr mZd Uyéguiyd ™ |UuU's} (29)
i
The expression (29) for the generalization error is composed
+ E tr(wy,W/',U,U7 ) + EE2. from three terms:
for the prediction error, assurde~ N(O, 1 ,). Consequently the model (23), an asymptotic (minimal, ideal) prediction
U=T'X ~N(@,I), and error, . .
e U (]JN)EEdj increases wittN (whenN < p);
E£F2’|NV = 0'2 + TA + TB’ (28) 1 pz N
L7 A - (1 - —) decreases with.
where N@d-p) p
1
— 2_ fl
Ta=o N Ezdl ’ Numerical analysis of Eq. (29) shows that with increase

. in the learning-set sizH, from 1 up top, the generalization
1 error decreases at first, comes to a minimum, and begins to
Tg = O'ZN Zwiwj—EZtgtq. increase whei approacheg (theoretically until infinity).

i s This agrees with conclusions obtained earlier from the
statistical mechanics approach (see e.gs,B®96; Krogh
& Hertz, 1992) and that obtained for the classification task
(Raudys, 1998b; Raudys & Duin, 1998). Whin> p, we
have standard regression where the generalization error
(a) all components of vectot are equally correlated with  declines monotonically with increase in the learning-set
y, and size N (Eg. (25)). In Section 3.4, we demonstrated that in
(b) only one (say, the first) componentXfis correlated the large learning-set case (whin> p) back propagation
with y. training of a linear SLP leads to standard regression and

Eq. (28) indicates that the generalization error depends on
componentsvy, W, ..., W, of the models weight vector™.
Let us considetwo extreme cases
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€ " — " T the standard regression with pseudo-inversion, Graph 3 to
SLP aftert,,,, = 2000 iterationst,,5x = 10,000 whenN >
p), and Graph 4 to optimally stopped SR, = 0; batch
training; n = 0.1 whenN < p, andn = 0.3 whenN > p).
Gaussian N,l,) 20-variate data; all prediction variables
X1, %2..., X, are equally correlated witly; the coefficient of
the multiple correlatiomp = 0.9. For N < p, the theoretical
graph was calculated from Eq. (29), and fér> p from
(25). The empirical graphs are average values obtained
from 500 (whenN < p) or 50 (whenN > p) independent
experiments. We see, theoretical (1) and experimental (2)
graphs (for standard regression with pseudo-inversion of the
covariance matrix) are very close. The Graph 3 for the
exhaustively trained SLP resembles the graphs 1 and 2.
0 . . . ) The optimally stopped SLP (Graph 4) performs at best.
0 10 20 30 40 N All first three graphs exhibit the peaking behavior whén
Fig. 4. Generalization of the standard regression (with the pseudoinversion is close top, however, the optimally stopped perceptron (the
of the covariance matrix, iN < p) : 1—theory, 2—experiment, 3—SLP Graph 4) does not. It advocates once more that use of
after 2000 (ifN < p), or 10,000 (ifN > p) iterations, 4—optimally stopped  pSeudo-inversion is not the best choice in the regression
SLP. design process.

whenN < pto standard regression with the pseudo-inverse. 4 5 Robust regression
Therefore, one can expect a similar peaking behavior of the
fully trained linear SLP used as the predictor. The peaking No theoretical results are available in the literature. To
behavior, however, can be abolished if we stop the training explain principal tendencies in the small learning-set beha-
process optimally. In Section 2 we have shown that early vior, we performed a number of simulation experiments. In
stopping prevents us from obtaining standard regression andSection 3.5, we demonstrated a simple example where
forces the perceptron to act as regularized regression actsobust regressions outperforms the standard one if the data
(recall that in regularized regressiare add positive values  is contaminated by a noise (Fig. 1). Standard regression is
A to all eigenvalues of the sample covariance magiy). appropriate for multivariate Gaussian data. In comparison
Simulation experiments show that in very small sample with standard regression, in robust regression most distant
cases, regularized regression is a better strategy than stanebservation vectors have less weighty contributions while
dard regression with pseudo-inversion whave ignore determining the weights of the linear regression equation.
directionscorresponding to zero eigenvalues. Therefore, for Gaussian data use of robust regression can
In Fig. 4, we present theoretical (1) and experimental (2, 3 lead to an increase in the prediction generalization error. As
and 4) graphs of dependence of the generalization error ona typical example in Fig. 5, we present learning curves
the number of learning exampldk Graph 2 correspondsto  f(t) of standard and robust SLP regression trained with the
cost function (20) and = 3. We used 50-variate Gaussian
€ - ' . data; all p variablesx;,x,...,x, were equally correlated
among themselvegp = 0.3); before training the percep-
trons the data was normalized by subtracting a sample
mean vector and dividing all variables by their standard
deviations; the learning-set si2¢= 60, the learning rate
1 = 0.001 Curves 1 and 2 correspond to generalization and
training-set errors of robust SLP, and curve 3 to the general-
ization error of the standard linear SLP. Straight lines 4 and
5 correspond to the generalization and training-set errors
(0gen= 0.481, Tyaining = 0.111) of the standard regression.
. The minimal generalization error of the standard
el SLP (0gen= 0.324) is lower than the minimal value of the

- - generalization error of the robust SiBF gy, = 0.377). For

0 . . . scalinga = 10 the robust SLP results in much higher error
0 100 200 300 g (0gen= 1.2). For a = 0.1, however, the cost function of

Fig. 5. Generalization of robust regression. 1, 2—robust SLP (test-set and robust regression Is aCtua”y the quadratlc function. Thus,

training-set); 3—standard linear SLP (test-set); 4,5—standard regressionfOf @ = 0.1 we haveog, = 0.324 i.e. the same value as
(test-set and training-set). with standard regression.
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to normalized data (see Section 5.3) resulted in a little bit
better prediction erroreg p = 0.223 Robust regression
with cost functions (20) and (21)) resulted #Rogyst =
0.242 (for a = 0.6), eropust= 0.125 (for @ = 17), and
erogusT = 0.126 (for @ = 20). Hence, selection of optimal
values ofe andt allowed the gereralization error to be
reduced 2.05 times (in comparison with the standard regres-
sion), and in all experiments we present generalization error
values of optimally stopped SLP.

In Section 4.1, we showed that in the low intrinsic dimen-
sionality case, the generalization error of primitive regres-
sion can become very low. Regularized regression is an
intermediate case between standard and primitive regres-
sions. The generalization error of the regularized regression

max

6.5

0 1000 000 3000 2000 ; also can be adequately low. In the optimized robust percep-
e | ' j ' ‘ tron, we have regularized robust regression. This means that

R in the low intrinsic dimensionality cases, the SLP robust

i regularized regression can have good small learning set
365 [ ] size properties too.

4.6. Minimax (support vector) regression
136 . : . ,
: No theoretical results are available in the literature here
either. In standard regression, we minimize the mean square
error. In minimax adaptive regression, we minimize the

355-§ . distances from the prediction hyperplane to the farthest

: 2s . . . L. .

: . learning-set vectors. This distance diminishes during the
B e L L R LR SRAREEEEE training. The maximal distance between the test-set vectors
’ , , . , and the hyperplane (generalization), however, exhibits over-

0 1000 2000 3000 4000 t training behavior: it diminishes at first, reaches a minimum
. - . . _ . and then begins to increase. The mean square errors, both in
Fig. 6. The minimax regression. (a) The maximal distathggas a function . di . icall hibi traini Th
of the number of iterations: 1—training-set, 2—test-set. (b) The standard training and In testing, typically exhibit overtraining. e

deviation as a function of the number of iteratidngs—training-set, 2s— overtraining, however, there occurs earlier.
test; 3—standard linear SLP test-set. For a rough evaluation of relations between the general-

ization error, dimensionalitp, and the learning-set si2¢,

The experimental studies demonstrated a preference ofwe performed a number of simulation experiments with
the cost functions (20) and (21) over the cost (18) and Gaussian and non-Gaussian data. We found that an increase
(19). In Gaussian cases, utilization of the robust cost func- in the generalization error mainly depends on the rhitio,
tion in the SLP training results in no gain. In both, Gaussian as predicted by theory for the linear regression models. For
and non-Gaussian cases, the generalization error of theexample, for data model (23) withumiform random noisé
linear SLP perceptron with optimally chosen andt is in the interval 0.25:+0.25), fore = \/E£€2 = 0.1445 and
lower than that for standard regression. Here the regularizedaccording to Eq. (25) the generalization error of the standard
and robust regressions act together. Thus, we obtesbust sum of squares regressiene, =~ 0.37 whenN = 1.2p. In
regularized regressiarTo obtain the best results we need to 50 repetitions of the experiments, we obtained approxi-
choose both the optimal number of iteratidgrasd the non- mately the same values ofy.,for all four dimensionalities
linearity parametex. The value of the learning-stepalso of the feature space(p= 102030, and 50 tested:
is an important parameter. In order to obtain fast conver- opgep =~ 0.38 for standard regressiomge, =~ 0.19 for opti-
gence, the parameter should depend on. mally stopped minimax SLP, ange, =~ 0.23 for minimax

The priority of robust regression unveils only in non- SLP after 1000 iterations witlk =5, and n=0.5. In a
Gaussian cases with atypical observations. As a characterfurther increase in the number of iterations, the generaliza-
istic example, we can mention a stock market closing index tion error gradually approached 0.38, the generalization
prediction task. The learning set was composed from 500 error of the standard regression. The non-linear character
25-variate observation vectors and had a number of atypicalof the cost function (20), however, often oppress this
observations. Standard regression resulted in the test-seprocess, and we need tremendous numbers of iterations in
prediction error egtanp = 0.257. Use of the optimally order to become close to standard regression. Fortunately,
stopped linear SLP (optimal regularized regression) applied the best generalization is obtained much earlier.
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7 T " iterations. In this experiment 5000 iterations correspond to
A overtrained perceptron. We see five learning-set vectors (A,
B, C D and E) contribute at most to the cost function value,
however the remaining vectors (15 at least) also have nota-
ble influence. A more general conclusion obtained from this
and other experiments, is that in spite of the fact that we are
! rather far away from the support vector regression, the
'E B maximal distance and the minimal mean square error
] amongthe test-set vecto@re obtained substantially earlier.

To obtain the support vector classifier while training the
. non-linear SLP, we need to have no classification errors
o . 1 among the learning-set vectors, to use limit target values

| (ty=0 andt, =1 for the sigmoid activation function
.. L f(c) = /(1 + exp(—0)) ), and gradually increase the learn-
oo 7 ing-stepn with an increase in the number of BP iterations
(Raudys, 1998a). In regression, however, we need to use a
Fig. 7. Contributions¥ of 60 learning-vectors to the cost function after  special pattern error function (Eg. (22) for example) and
5000 iterations. gradually increase the scaling parametewith an increase
in the number of BP iterations. Simulation experiments

For multivariateGaussianand evemon-Gaussian data ~ show that in both tasks, classification and regression,
typically the generalization mean square error of the mini- convergence to the support vector machine is slow. In
max adaptive regression is higher than that of the standardboth tasks, nevertheless, the best generalization is obtained
optimally stopped SLP. Data models where the intrinsic far earlier before the support vector machine is obtained.
dimensionality of the data is very low and noigdn the
data model (23) isuniformly distributed constitute excep-
tions. In such cases, the generalization error of the optimally
stopped minimax SLP regression is frequently somewhat
lower than that of the standard optimally stopped SLP.

In Figs. 6a, b and 7 we present suchan-typical exam-
ple. In this example, the intrinsic dimensionality of 49-
variate vectorX is practically equal to 1: all components
of vectorX are equally correlategh = 0.3), maximal devia-
tions of X in directions of 48 eigenvalues &f are 0.0005;

40F

30t

20¢

0 distance

5. Complexity control
5.1. A necessity

We have shown that while training a SLP, we can obtain
six different types of regression, which should be used in
different circumstances. When we have the multivariate
Gaussian data with low intrinsic dimensionality, the primi-
. . . tive regression or briefly trained linear SLP can become
and the last eigenvalue is equal to 1; nagsm the model very useful. For certain distributions of the components of

(23). is uniform in the |ntervalf0.25.,+0.25.). In Fig. 6a, we the weight vector and eigenvalues of the covariance matrix
depict the dependence of the maximal distance between the

o S of the vector X, however, the primitive regression can
training set vectors and the prediction hyperplane (curve 1) erform very poorly. For such types of data in the large
and between the 'Fest-s_et vectors and the hyperplgne (.C urve 2 earning-set caseN > 2p), we need to use standard regres-
on t.hPT number of |terat|ons..We see th‘?lt the.trammg dIStf""f.lcesion, i.e. to use the linear SLP and train it almost until the
diminishes constantly, while the testing distance exhibits

kina behavior. Fid. 6b sh th deviati end. If the learning-set size is small, we need to use regular-
peaking behavior. I71g. bb Shows the mean square deviations, o 4 regression, i.e. to stop training earlier. When the data is

as fu.n(;tlor:ﬁ Oftth? nutmber of |t§rgtl<:rr]15:tls:[ thet trammgf—s;ﬁt contaminated by noise and we have a great percentage of
etrrorc,j 3 i € egl-_spe error f‘n A” tﬁ est-set error Ok | eatypical observations, outliers, the robust regression is
standard linear perceptron. ree curves peax. in preferable over all other types of the regression rules. In

t_h|s IOV.V !ntr|n3|c dlmensmnahty case, nevertheless, adgp— such cases, we need to use a non-linear SLP with cost func-
tive minimax regression outpenfqr ms stgndard adaptive tions (18) or (20) and (21). In some cases, the maximal
regression according to the minimal distance and the accuracy prediction is of the minimax regression (SLP

mean square_dewatlon. . . with pattern error function (22) as discussed in Section 3.6).
This experiment (non-typical), however, indicates that

there is no need to train the perceptron until the support 5 o Tools

vector regression is obtained. In other experiments

performed with non-uniform noise and especially in experi- ~ Which tools can be used to control the result obtained?
ments with higher intrinsic dimensional data, the necessity First of all is thenumber of iterationsn the gradient (BP)

to stop training the minimax SLP earlier is much more training algorithm. Use of second-order optimization
obvious. Fig. 7 shows contributions of sixty 50-variate train- methods such as the Newton algorithm can lead to the stan-
ing-set vectors (training data) to the cost function after 5000 dard regression in one single learning iteration. In such
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cases, we fail to obtain regularized regression. This explains5.3. Data complexity control

why simple gradient training methods often outperform _ )

The value of thdearning-stepn also provides a very Qf regression obtained_ i_n_ agap.tive trainingm'eight initia-
important tool, which affects the result. Typically the learn- !|zat_|on. A successful mmah;auon ylelds_ smaller general-
ing-step controls the speed of the learning process. ToolZation errors and permits this to be obtained faster (Raudys
small values ofn make the training very slow, while too & Amari, 1993). We have seen that the transit qf the coor-
large ones can lead to local minima and/or to the divergencedinate center Into the Samp!e_l mean of t_he I_earnlng datg set
of the algorithm. It is known (see e.g. Amari, 1967) that the helps one to qbtam thfa primitive regression in one iteration.
value of the learning-step controls the variance of the final In Some situations, this type of regression is the best choice
weight vector. According to this theory, in order to find the (Section 4.2). Therefore, in such situations, the weight
minimum of the cost function, the learning-step should Vector after the very first iteration can become a very
diminish with the increase in the number of iterations. It 900d starting position for further training. _
is absolutely true only in the linear SLP training. Here the  Moreover, for many models of the data and configura-
cost function does not change with an increase in the tions of the components of the ideal weight veatGrprimi-
number of iterations. In the non-linear SLP, the cost func- tive regression requires fewer training vectors than the more
tion changes and one has to control the magnitude of theCOmplex standard regression (Sections 4.1 and 4.2). For
learning step with any increase in the number of iterations. SOme configurations, the difference can be very large. Itera-
One more remark concerning the learning-sigpin the tive BPtralnlng_of the single layer perc_eptron b_ecom_es very
non-linear SLP, overly large values af can saturate the ~ Slow when variances of vectoft are different in various
cost function and stop further training at all. In order to directions, i.e. when the eigenvalues of the covariance
obtain primitive regression in one single iteration, we Matrix X are essentially different (Le Cun, Kanter &
need to usep = 1. We can decrease this value in further Solla, 1991). _ .
training. For some data models, however, we need to choose The above arguments advocate that it would be desirable,
a very small learning-step value just for the first iteration Prior o training the perceptron, to transform the data in such
(see the simulation experiments mentioned at the very end@ Way that to have the spherical Gaussian distribution of
of the Section 4.2). vector X. We can try to do th!s by transforming the data

The types ofactivation and cost functionare of great ~ PY means of rotation and scaling:
importance too, and allow one to choose between linear — D Y27/x

. . H new — ’
and non-linear perceptrons, and obtain robust and/or mini-
max regressions with different properties. We have whereD and T are pX p diagonal eigenvalue andx p
discussed these properties above, in Section 3. Theregigenvectors matrix of the covariance matdix Instead of
the values of the scaling parameter, play a very impor- >, we can use the sample covariance maSjix Then the
tant role. Small values of these parameters move the costlearning-set covariance matrix &f,., will be an identity
functions (18) and/or (20) and (21) to the standard sum of matrix |. After the first learning iteration in the transformed
squares cost and to the linear SLP, while in the large- space we obtainXpe) W™ = X’ Sx¥Sy,, i.e. we have
learning-set caséN > 2p), large values ofa control the standard regression (4) in the origina) (space (Section
degree of ignored distant observations. In minimax regres- 3.1, Eq. (12)).
sion, the parametes controls the proportion of the most In the singular value decompositid@isyx T’ = D, instead
distant observations, which contribute to the final position of the standard maximum likelihood estima®y =
of the regression equation. Consequently, the optimal  (1/N) >} X;X; one can use some additional information
values should be chosen in dependence with the structureconcerning the structure of the covariance mafXix For
of the data. example, use of an assumption that components of vector

Besides the standard cost function of the type (1), an X are realizations of a stationary Gaussian autoregressive
additional regularization term can be added (Hinton, process of ordeh, leads to aconstrained estimate of the
1987). Addition of the simple weight decay term covariance matrixand reduces the number of parameters to
+AgwW'W has a regularization effect: it can be shown be estimated from the learning data frpap + 1)/2 toh. In
that Ag plays the role of termi in the regularized regres-  the case, when assumptions concerning the structure of the
sion discussed in Sections 2.3 and 3.3 (see also Sjoberg &covariance matrix3 are approximately correct, in subse-
Ljung, 1992). Large weights can help to obtain the mini- quent training of the SLP, one can obtain a significant
max (support vector) regression easier. Then we can usegain (see e.g. experimental results obtained for the classifi-
the regularization term- Ag(W'w — h?? where parameter  cation task in Raudys & Saudargiene, 1998). Much smaller
h controls the magnitudes of the weights. Selection of an generalization errors also can be obtained if instead of the
optimal set of training parameters and a way to control standard maximum likelihood estiméag,, we use the regu-
the training process constitute the topic of the next few larized sample estimate of the covariance matrix (Raudys,
sections. 2000). Utilization of constrained estimates of the covariance
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matrix in order to perform the data transformati¥pe,, = intensive method can be applied to choose the best type of
D ~Y2T’X, is in fact an incorporation of additional statistical regression in the SLP training.

information into the perceptron design. If, in addition to the ~ One more possibility to form a pseudo-validation-set is a
conventional learning-set, some more information is noise injection The injection of the Gaussian spherical
available, possibly this information can be used to transform noise N(0LA) asymptotically (when a number of the noise

the data in such a way that make the teffRandTg in Eq. injections tends to infinity) is equivalent to usage of
(26) as small as possible. This is the subject of further regularized regression, where we add compohgnb the
investigations. sample estimate of the covariance matrix. Therefore

Gaussian spherical noise N(®) injection can not be
usedfor a correct non-biased model choice. To improve
statistical classifiers and neural networks Duin (1993)
In principle, one can use analytical formulae for the suggested injecting-NN directed noise. In his proposal,
expected prediction errordgedicion t0 calculate this error  for each learning-vectox;, one injects noise in directions
for the number of regression models, and then to choose theof few nearest neighbors tg. Skurichina and Duin (1997)
best. An example has been presented at the end of Sectiormnd Skurichina, Raudys and Duin (2000) suggest tkuse
4.2. Unfortunately, a number of obstacles exist. First of all, 2. Contrary to traditional regularized classification or
EepredicioniS @ mean value, and practically for each particular regression, this approach introduces new information
learning-set, we have random deviations from the expectedconcerning the local structure of the data, what is different
(mean) values. Second, in order to use analytical formulaefrom assumptions used to construct a regularized regression.
we need to know several true parameters of the data model.Therefore, in some circumstances, tBIN directed noise
For example, for the primitive regression these are the injection can be used to form an additional validation-set for
components of the optimal weight vector and the eigenva- the model choice. This problem deserves further analysis.
lues. Sample estimates of these parameters are not exact
and, no doubt, result in random errors while calculating
E&predicion Third, the true data model, as a rule, is unknown.
Use of the simplified multivariate models, such as the multi-
variate Gaussian distribution, causes additional bias errors.
And, last, for a majority of real world data models analytical

5.4. Optimal complexity

6. Concluding remarks

If appropriately used, the theoretical findings concerning

. ¢ derived h bust and mini the evolution in the single-layer perceptron training process
equations are t?]O terl(\j/ed(e.g. 't'e robust an r;unlmax can become very useful. The main theoretical results
regression, or the standard, primitive regressions for non-presented in this paper are the following:

Gaussian data models) either are only approximate (e.g. Eq.
(27) for the regularized regression is valid only for very 1. While training the SLP we can obtain six different types
small A). Therefore, a purely analytical route to the best  of the regression, starting from the simplest one in the

model choice is impractical. statistical sense, and going on to more complex ones.

A standard practical way afodel choicen statistical 2. The main tools, which can help to control the complexity
inference iscross validation There, one splits the design- of the prediction rule are: the number of learning itera-
set vectors into two parts. One part is usedtfaming and tions, the learning-step’s value control during the
the second one foralidation (testing. In order to use the iterative training process, the type of activation and
design-set vectors more economically sometimes one uses a pattern error functions, as well as the scaling parameter
rotation method: there one splits the design-set ikfmarts a value, which determines the shape of the pattern error
and use& — 1 parts of the data for training, and the remain- functions. The data transformation prior to training the
ing one part for testing. This procedure is repedtdidhes, perceptron is a very important tool and can help to utilize
and an average generalization error value ofkadixperi- additional information about the structure of the data
ments is used to select the best model. One more method is presented in a form of a statistical hypothesis about the
the bootstrapmethod (Efron, 1979). There, in order to esti- structure of the covariance matrix.

mate the bias of the apparent (learning-set, or resubstitution)3. The analytical formulae of the expected generalization
prediction error the following computer intensive procedure  error derived for the linear SLP shows that the relation-
is used. FromN design-set vectors, one forms a random  ship between generalization error and learning-set size

bootstrap learning-set composed frdfrrandomly chosen depends on the regression type, and on the data. The
vectors. The model is tested twice: (a) on the bootstrap relationship can depend on components of the vector
learning-set, and (b) on aNl original design-set vectors. w” too. The intrinsic dimensionality of the data is of
The procedure is repeatddtimes. The mean valu@py great importance also. For certain configurations of

of the difference between the two estimates (a and b) is the data (low intrinsic dimensionality, special struc-
estimated ovek runs of the experiment. The difference ture of the components of vectav®), the perceptron
Apoot IS used to estimate a bias of the resubstitution can be perfectly trained with very short learning
(learning-sets) error estimate. In principle, this computer-  sequences.
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In order to train the SLP in the best way we recommend: Acknowledgements
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2. To transform the data in order to have it approximately
spherical distributed data with unit variance of all
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components of vectaX ., We suggest to start training Appendix

from zero initial weight vector and for a short time to test
several learning-steps values. It is a way to integrate the
statistical and neural net approaches to design linear
prediction rules.

3. To analyze bi-variate scatter diagrams of some pairs of
components ofX,., and if we see that the data is
obviously non-Gaussian, and/or contaminated by outliers
to choose the robust cost function with the cost functions
(20) and (21), and to train the perceptron with different
values of the scaling parameter If there are no visible
outliers to use the standard sum of squares cost function
or use smalle. In the Appendix, we preserNIATLAB
code for robust regression (20) with (21).

4. To form the validation-set in one way or another. To use
this set in order to choose the optimal valuexoind the
optimal numbers of iterations for each particulara
value.

The analysis performed explains particular theoretical
questions, however some important problems remain
unsolved. First of all, there are no theoretical formulae for
the generalization error of the robust and the minimax
regressions yet, as well as more exact non-asymptotic
expressions for regularized and standard regression with
pseudo-inversion in a general case (wiee |). It would
be interesting to find out how to use additional information
in order to transform the data in such a way that the téfgns
andTg in EqQ. (26) become small.

The single-layer perceptron and the back propagation
training are simplified mathematical models of complex
information processing processes, which take place in
Nature. In the BP training, we begin from the simplest in
the statistical sense models (the Euclidean distance classifier
or primitive regression) and gradually step-by-step move
towards more complex models (regularized and robust
procedures, the support vector machines). One may
guess that this is a natural way of development. During
the last few decades statisticians and engineers under-
stood that while designing the decision making algorithms
from experimental data one needs to move from simple
algorithms to complex ones. The artificial neuron does
this in a natural way. Statisticians required several
decades to develop a number of statistical classification

% Find robust regression by

% the nonlinear single layer perceptron
% author Sarunas Raudys

% <raudys@das.mii.lt >

% A input N*p array - training-set

% Y target N*1 array- training-set

% At input Nt*p array - test-set

% Yt target Nt*1 array- test-set

% iter - number of iterations

% step - learning-step

% Wstart - 1*(p  + 1) starting weight

% vector

% alfa - scaling parameter

% W - 1*(p + 1) final weight vector

% et - generalization error history in

% iter training iterations

% prior to training we recommend:

% - to substract from A,Y; At,Yt the sample
% means of A)Y;

% - to use Wstart = zeros(1,p +1);
% - whitening of a distribution of input

% vector can be useful

function [W,et] = robustpc

(A,Y,At, Yt iter,step,Wstart,alfa)

[N, p] = size(A);

[Nt, pt] = size(At);
W= WSstart;
stepalfa = step/alfa;

AA=[A, ones(N,1)];
AAt =[At, ones(Nt,1)];
fori = liter
dist =alfa*(Y —AA*W);
ind = find(abs(dist) < pi);
W= W+ stepalfa
* sin(dist(ind))*AA(ind,:);
dt = AAB'W — Yt;
et(i) = sqrt(dt*dt./Nt);
end
return
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