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Preface

The purpose of this little book is to provide an introduction to the basic concepts of
category theory. It is intended for the graduate student, advanced undergraduate
student, nonspecialist mathematician or scientist working in a need-to-know area.
The treatment is abstract in nature, with examples drawn mainly from abstract
algebra. Although there are no formal prerequisites for this book, a basic knowledge
of elementary abstract algebra would be of considerable help, especially in dealing
with the exercises.

Category theory is a relatively young subject, founded in the mid 1940s, with the
lofty goals of unification, clarification and efficiency in mathematics. Indeed,
Saunders MacLane, one of the founding fathers of category theory (along with
Samuel Eilenberg), says in the first sentence of his book Categories for the Working
Mathematician: “Category theory starts with the observation that many properties
of mathematical systems can be unified and simplified by a presentation with
diagrams of arrows.” Of course, unification and simplification are common themes
throughout mathematics.

To illustrate these concepts, consider three sets with a binary operation:

1) the set R* of nonzero real numbers under multiplication

2) the set M(n, k) of n x k matrices over the complex numbers under addition
and

3) the set B of bijections of the integers under composition.

Now, very few mathematicians would take the time to prove that inverse
elements are unique in each of these cases—They would simply note that each of
these is an example of a group and prove in one quick line that the inverse of any
element in any group is unique, to wit, if & and 3 are inverses for the group element
a, then

a=al =a(af)=()s=18=p

This at once clarifies the role of uniqueness of inverses by showing that this property
has nothing whatever to do with real numbers, matrices or bijections. It has to do
only with associativity and the identity property. This also unifies the concept of
uniqueness of inverses because it shows that uniqueness of inverses in each of these
three cases is really a single concept. Finally, it makes life more efficient for
mathematicians because they can prove uniqueness of inverses for all groups in
one fell swoop, as it were.

Category theory attempts to do the same for all of mathematics (well, perhaps
not all) as group theory does for the case described above.

But there is a problem. It has been my experience that most students of
mathematics and the sciences (and even some mathematicians) find category
theory to be very challenging indeed, primarily due to its extremely abstract nature.
We must remember that the vast majority of students are not seeking to be category
theorists—They are seeking a “modest” understanding of the basic concepts of
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viii Preface

category theory so that they can apply these ideas to their chosen area of specialty.
This book attempts to supply this understanding in as gentle a manner as possible.

We envision this book as being used as independent reading or as a supple-
mentary text for graduate courses in other areas. It could also be used as the
textbook for either a short course or a leisurely one-quarter course in category
theory.

The Five Basic Concepts of Category
Theory

It can be said that there are five basic concepts in category theory, namely,

o Categories

o Functors

 Natural transformations
o Universality

« Adjoints

Some would argue that each of these concepts was “invented” or “discovered” in
order to produce the next concept in this list. For example, Saunders MacLane
himself is reported to have said: “I did not invent category theory to talk about
functors. I invented it to talk about natural transformations.”

Whether this be true or not, many students of mathematics are finding that the
language of category theory is popping up in many of their classes in abstract
algebra, lattice theory, number theory, differential geometry, algebraic topology and
more. Also, category theory has become an important topic of study for many
computer scientists and even for some mathematical physicists. Hopefully, this
book will fill a need for those who require an understanding of the basic concepts of
the subject. If the need or desire should arise, one can then turn to more lengthy and
advanced treatments of the subject.

A Word About Definitions

To my mind, there are two types of definitions. Standard definitions are, well,
standard. They are intended to be in common usage and last through the ages.
However, after about 40 years of teaching and the writing of about 40 books, I have
come to believe in the virtue of nonstandard, temporary, ad hoc definitions that are
primarily intended for pedagogical purposes, although one can hope that some ad
hoc definitions turn out to be so useful that they eventually become a standard part
of the subject matter.

Let me illustrate a nonstandard definition. One of the most important (some
would say the most important) concepts in category theory is that of an adjoint.
There are left adjoints and right adjoints, but the two concepts come together in
something called an adjunction.

ms@ms.lt



Preface

Now, there are many approaches to discussing adjoints and adjunctions. In my
experience, adjunctions are usually just defined without much preliminary leg work.
However, one of the goals of this book is to make the more difficult concepts, such
as that of an adjunction a bit more palatable by “sneaking up” on them, as it were.
In order to do this with adjunctions, we gently transition through the following
concepts,

initial objects in comma categories — universality — naturalness —

binaturalness (adjunctions)

During this transition process, we will find it extremely useful to use certain maps
that, to my knowledge, do not have a specific name. So this is the perfect place to
introduce a nonstandard definition, which in this case is the mediating morphism
map.

The only downside to making nonstandard definitions is that they are not going
to be recognized outside the context of this book and therefore must be used very
circumspectly. But I think that is a small price to pay if they help the learning
process.

That said, I will use nonstandard definitions only as often as I feel absolutely
necessary and will try to identify them as such upon first use, either by the term
“nonstandard” or by a phrase such as “we will refer to ...”.

Thanks

I would like to thank my students Phong Le, Sunil Chetty, Timothy Choi, Josh
Chan, Tim Tran and Zachary Faubion, who attended my lectures on a much
expanded version of this book and offered many helpful suggestions.

Steven Roman
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Foundations

Before giving the definition of a category, we must briefly (and somewhat informally) discuss a
notion from the foundations of mathematics. In category theory, one often wishes to speak of
“the category of (all) sets” or “the category of (all) groups.” However, it is well known that these
descriptions cannot be made precise within the context of sets alone.

In particular, not all “collections” that one can define informally through the use of the
English language, or even formally through the use of the language of set theory, can be
considered sets without producing some well-known logical paradoxes, such as the Russell
paradox of 1901 (discovered by Zermelo a year earlier). More specifically, if ¢(x) is a well-
formed formula of set theory, then the collection

X = {sets z ’ ¢(x) is true}

cannot always be viewed as a set. For example, the family of all sets, or of all groups, cannot be
considered a set. Nonetheless, it is desirable to be able to apply some of the operations of sets,
such as union and cartesian product, to such families. One way to achieve this goal is through
the notion of a class. Every set is a class and the classes that are not sets are called proper
classes. Now we can safely speak of the class of all sets, or the class of all groups. Classes have
many of the properties of sets. However, while every set is an element of another set, no class
can be an element of another class. We can now state that the family X defined above is a class
without apparent contradiction.

Another way to avoid the problems posed by the logical paradoxes is to use the concept of
a set U called a universe. The elements of U/ are called small sets. Some authors refer to
the subsets of U as sets and some use the term classes. In order to carry out “ordinary
mathematics” within the universe U/, it is assumed to be closed under the basic operations of
set theory, such as the taking of ordered pairs, power sets and unions.

These two approaches to the problem of avoiding the logical paradoxes result in essentially
the same theory and so we will generally use the language of sets and classes, rather than
universes.

The Definition

We can now give the definition of a category.
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2 Chapter 1- Categories

= Definition

A category C consists of the following:

1) (Objects) A class Obj(C) whose elements are called the objects. It is customary to write
A € Cin place of A € Obj(C).

2) (Morphisms) For each (not necessarily distinct) pair of objects A, B € C, a sethom¢(A, B),
called the hom-set for the pair (A, B). The elements of hom¢(A, B) are called morphisms,
maps or arrows from A to B. If f € hom¢(A, B), we also write

ftA— B or fup

The object A = dom(f) is called the domain of f and the object B = codom( f) is called the
codomain of f.

3) Distinct hom-sets are disjoint, that is, hom¢(A, B) and home(C, D) are disjoint unless
A=Cand B=D.

4) (Composition) For f € hom¢(A, B) and g € home(B, C) there is a morphism
go f €home(A,C), called the composition of g with f. Moreover, composition
is associative:

fo(goh)=(fog)oh

whenever the compositions are defined.
5) (Identity morphisms) For each object A € C there is a morphism 14 € hom¢(A, A), called
the identity morphism for A, with the property that if f ,, € hom¢(A, B) then

Ipofap=1/Ffap and fapola=fap
The class of all morphisms of C is denoted by Mor(C). O

A variety of notations are used in the literature for hom-sets, including
(A,B), [A,B], C(A,B) and Mor(A,B)

(We will drop the subscript C in hom¢ when no confusion will arise.)

We should mention that not all authors require property 3) in the definition of a category.
Also, some authors permit the hom-sets to be classes. In this case, the categories for which the
hom-classes are sets is called a locally small category. Thus, all of our categories are locally
small. A category C for which both the class Obj(C) and the class Mor(C) are sets is called a
small category. Otherwise, C is called a large category.

Two arrows belonging to the same hom-set hom(A, B) are said to be parallel. We use the
phrase “f is a morphism leaving A” to mean that the domain of fis A and “f is a morphism
entering B” to mean that the codomain of f is B.

When we speak of a composition g o f, it is with the tacit understanding that the
morphisms are compatible, that is, dom(g) = codom( f).

The concept of a category is very general. Here are some examples of categories. In most
cases, composition is the “obvious” one. We suggest that you just skim this list of examples at
this point. If you are not familiar with some of the concepts in these example (such as smooth
manifolds), not to worry. The purpose of this list is to give you a general idea of the wide range
of categories in mathematics.
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The Definition

= Example 1
The Category Set of Sets
Obj is the class of all sets.
hom(A, B) is the set of all functions from A to B.

The Category Mon of Monoids
Obj is the class of all monoids.
hom(A, B) is the set of all monoid homomorphisms from A to B.

The Category Grp of Groups
Obj is the class of all groups.
hom(A, B) is the set of all group homomorphisms from A to B.

The Category AbGrp of Abelian Groups
Obj is the class of all abelian groups.
hom(A4, B) is the set of all group homomorphisms from A to B.

The Category Modp of R-modules, where R is a ring
Obj is the class of all R-modules.
hom(A, B) is the set of all R-maps from A to B.

The Category Vect of Vector Spaces over a Field
Obj is the class of all vector spaces over F.
hom(A, B) is the set of all linear transformations from A to B.

The Category Rng of Rings
Obj is the class of all rings (with unit).
hom(A, B) is the set of all ring homomorphisms from A to B.

The Category CRng of Commutative Rings with identity
Obj is the class of all commutative rings with identity.
hom(A, B) is the set of all ring homomorphisms from A to B.

The Category Field of Fields
Obj is the class of all fields.
hom(A4, B) is the set of all ring embeddings from A to B.

The Category Poset of Partially Ordered Sets

Obj is the class of all partially ordered sets.

hom(A, B) is the set of all monotone functions from A to B, that is, functions f: P — @
satisfying

p<q = flp)<flg
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4 Chapter 1- Categories

The Category Rel of relations
Obj is the class of all sets.
hom(A, B) is the set of all binary relations from A to B, that is, subsets of the cartesian
product A x B.

The Category Top of Topological Spaces
Obj is the class of all topological spaces.
hom(A, B) is the set of all continuous functions from A to B.

The Category SmoothMan of Manifolds with Smooth Maps
Obj is the class of all manifolds.
hom(A, B) is the set of all smooth maps from A to B. O

= Example 2

The category of all categories does not exist, on foundational grounds. The well-known Russell
paradox shows that the set of all sets does not exist and an analogous argument has been
constructed to show that the category of all categories does not exist. However, the argument is
a bit involved and is not really in the spirit of this introductory book, so we will not go into the
details. On the other hand, the class S of all small categories does form the objects of another
category, whose morphisms are called functors, to be defined a bit later in the chapter. O

Here are some slightly more unusual categories.

= Example 3

Let F be a field. The category Matr; of matrices over F has objects equal to the set Z*
of positive integers. For m, n € Z*, the hom-set hom(m, n) is the set of all n X m matrices
over F, composition being matrix multiplication. Why do we reverse the roles of m and n?
Well, if M € hom(m, n) and N € hom(n, k), then M has size n x m and N has size k x n
and so the product NM makes sense and has size & x m, that is, it belongs to hom(m, k), as
required. Incidentally, this is a case in which the category is named after its morphisms, rather
than its objects. O

= Example 4

A single monoid M defines a category with a single object M, where each element is a
morphism. We define the composition a o b to be the product ab. This example applies to
other algebraic structures, such as groups. All that is required is that there be an identity
element and that the operation be associative. |

= Example 5
Let (P, <) be a partially ordered set. The objects of the category Poset(P, <) are the elements of
P. Also, hom(a, b) is empty unless a < b, in which case hom(a, b) contains a single element,
denoted by ab. Note that the hom-sets specify the relation < on P. As to composition, there is
really only one choice: If ab: @ — b and be: b — ¢ then it follows thata < b < candsoa <,
which implies that hom(a, ¢) # 0. Thus, we set bc © ab = ac. The hom-set hom(a, a) contains
only the identity morphism for the object a.

As a specific example, you may recall that each positive natural number n € N is defined to
be the set of all natural numbers that preceed it:

n={0,1,...,n—1}
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and the natural number 0 is defined to be the empty set. Thus, natural numbers are ordered by
membership, that is, m < n if and only if m € n and so n is the set of all natural numbers less
than n. Each natural number n defines a category whose objects are its elements and whose
morphisms describe this order relation. The category n is sometimes denoted by bold face n.O

= Example 6
A category for which there is at most one morphism between every pair of (not necessarily
distinct) objects is called a preordered category (some authors use the term thin category). If
C is a thin category, then we can use the existence of a morphism to define a binary relation on
the objects of C, namely, A < B if there exists a morphism from A to B. It is clear that this
relation is reflexive and transitive. Such relations are called preorders. (The term preorder is
used in a different sense in combinatorics.)

Conversely, any preordered class (P, <) is a category, where the objects are the elements of
P and there is a morphism f,p from A to B if and only if A < B (and there are no other
morphisms). Reflexivity provides the identity morphisms and transitivity provides the
composition.

More generally, if C is any category, then we can use the existence of a morphism to define
a preorder on the objects of C, namely, A < B if there is at least one morphism from A to B.O

= Example 7

Consider a deductive logic system, such as the propositional calculus. We can define two
different categories as follows. In both cases, the well-formed formulas (wffs) of the system are
the objects of the category. In one case, there is one morphism from the wif « to the wif 3 if and
only if we can deduce 3 given «. In the other case, we define a morphism from o to 3 to be a
specific deduction of (3 from q, that is, a specific ordered list of wifs starting with « and ending
with (3 for which each wiff in the list is either an axiom of the system or is deducible from the
previous wifs in the list using the rules of deduction of the system. O

The Categorical Perspective

The notion of a category is extremely general. However, the definition is precisely what is

needed to set the correct stage for the following two key tenets of mathematics:

1) Morphisms (e.g. linear transformations, group homomorphisms, monotone maps) play an
essentially equal role alongside the mathematical structures that they morph (e.g. vector
spaces, groups, partially ordered sets).

2) Many mathematical notions are best described in terms of morphisms between structures
rather than in terms of the individual elements of these structures.

In order to implement the second tenet, one must grow accustomed to the idea of focusing
on the appropriate maps between mathematical structures and not on the elements of these
structures. For example, as we will see in due course, such important notions as a basis for a
vector space, a direct product of vector spaces, the field of fractions of an integral domain and
the quotient of a group by a normal subgroup can be described using maps rather than
elements. In fact, many of the most important properties of these notions follow from their
morphism-based descriptions.

Note also that one of the consequences of the second tenet is that important mathematical
notions tend to be defined only up to isomorphism, rather than uniquely.
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6 Chapter 1- Categories

An immediate example seems in order, even though it may take some time (and further
reading) to place in proper perspective.

= Example 8
Let Vand W be vector spaces over a field F. The external direct product of Vand W is usually
defined in elementary linear algebra books as the set of ordered pairs

VxW= {(v,w)|v eViwe W}
with componentwise operations:

(v,w) + (W w") = (v+ v, w+w)
and

r(v,w) = (rv, rw)
for r € F. One then defines the projection maps
P VxW—-V and py:VxW-W

by

p(v,w)=v and p,(v,w)=w

However, the importance of these projection maps is not always made clear, so let us do
this now.

X
317
o, ¢ o,
VxW
AN
\Y W

Figure 1

As shown in Figure 1, the ordered triple (V' x W, py; py) has the following universal
property: Given any vector space X over F' and any “projection-like” pair of linear trans-
formations

o: X—V and oy X —-W
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from X to Vand W, respectively, there is a unique linear transformation 7: X — V' x W for
which

pieT=o0; and p,oT =0,

Indeed, these two equations uniquely determine 7(z) for any € X because
() = (p1(7(2)), p2(7(2))) = (01 (), 02(x))

It remains only to show that 7 is linear, which follows easily from the fact that o; and o, are
linear. Now, the categorical perspective is that this universal property is the essence of the direct
product, at least up to isomorphism. In fact, it is not hard to show that if an ordered triple

U, : U=V, 0: U—>W)

has the universal property described above, that is, if for any vector space X over F'and any
pair of linear transformations

o: X—V and o0y X - W

there is a unique linear transformation 7: X — U for which
AMoT=0; and MoT =0,

then Uand V' x W are isomorphic as vector spaces. Indeed, in some more advanced treatments
of linear algebra, the direct product of vector spaces is defined as any triple that satisfies this
universal property. Note that, using this definition, the direct product is defined only up to
isomorphism.

If this example seems to be a bit overwhelming now, don’t be discouraged. It can take
a while to get accustomed to the categorical way of thinking. It might help to redraw Figure 1
a few times without looking at the book. O

Functors

If we are going to live by the two main tenets of category theory described above, we should
discuss morphisms between categories! Structure-preserving maps between categories are
called functors. At this time, however, there is much to say about categories as individual
entities, so we will briefly describe functors now and return to them in detail in a later chapter.

The unabridged dictionary defines the term functor, from the New Latin functus (past
participle of fungi: to perform) as “something that performs a function or operation.” The term
functor was apparently first used by the German philosopher Rudolf Carnap (1891-1970) to
represent a special type of function sign. In category theory, the term functor was introduced by
Samuel Eilenberg and Saunders Mac Lane in their paper Natural Isomorphisms in Group
Theory [8].
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8 Chapter 1- Categories

Since the structure of a category consists of both its objects and its morphisms, a functor
should map objects to objects and morphisms to morphisms. This requires two different maps.
Also, there are two versions of functors: covariant and contravariant.

= Definition

Let C and D be categories. A functor F': C = D is a pair of functions (as is customary, we use
the same symbol F for both functions):

1) The object part of the functor

F: Obj(C) — Obj(D)

maps objects in C to objects in D
2) The arrow part

F': Mor(C) — Mor (D)

maps morphisms in C to morphisms in D as follows:
a) For a covariant functor,

F: hom¢(A, B) — homp(F A, FB)
forall A, B € C, that is, F maps a morphism f: A — B in C to a morphism Ff: FA — FB

in D.
b) For a contravariant functor,

F: hom¢(A, B) — homp(F B, FA)
for all A, B € C, that is, F maps a morphism f: A — B inC to a morphism Ff: FB — FA
in D. (Note the reversal of direction).

We will refer to the restriction of F to hom¢(A, B) as a local arrow part of F.
3) Identity and composition are preserved, that is,

Fly=1p4
and for a covariant functor,
F(gef)=Fge Ff
and for a contravariant functor,
F(gof)=FfoFg
whenever all compositions are defined. O

As is customary, we use the same symbol F for both the object part and the arrow part of a
functor. We will also use a double arrow notation for functors. Thus, the expression F': C = D

ms@ms.lt



Functors

implies that C and D are categories and is read “F’is a functor from C to D.” (For readability’s
sake in figures, we use a thick arrow to denote functors.)

A functor F': C = C from C to itself is referred to as a functor on C. A functor F': C = Set
is called a set valued functor. We say that functors F,G:C = D with the same domain
and the same codomain are parallel and functors of the form F': C = D and G: D = C are
antiparallel.

The term covariant appears to have been first used in 1853 by James Joseph Sylvester (who
was quite fond of coining new terms) as follows: “Covariant, a function which stands in the
same relation to the primitive function from which it is derived as any of its linear transforms
do to a similarly derived transform of its primitive.” In plainer terms, an operation is covariant
if it varies in a way that preserves some related structure or operation. In the present context, a
covariant functor preserves the direction of arrows and a contravariant functor reverses the
direction of arrows.

One way to view the concept of a functor is to think of a (covariant) functor F: C = Dasa
mapping of one-arrow diagrams in C,

to one-arrow diagrams in D,
P
Fatlpp

with the property that “identity loops” and “triangles” are preserved, as shown in Figure 2.

F
Ot e

A—t>B ¢ FA— " >Fp

Nl FgoFf-F(@Nl

A similar statement holds for contravariant functors.

Figure 2

Composition of Functors

Functors can be composed in the “obvious” way. Specifically, if F: C = D and G: D = € are
functors, then G o F: C = £ is defined by

(G o F)(4) = G(FA)
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10 Chapter 1- Categories

for A € C and
(GoF)(f) =G(F)

for f € hom¢(A, B). We will often write the composition G o Fas GF.

Special Types of Functors

= Definition

Let F: C = D be a functor.

1) Fis full if all of its local arrow parts are surjective.

2) Fis faithful if all of its local arrow parts are injective.

3) F'is fully faithful (i.e., full and faithful) if all of its local arrow parts are bijective.

4) Fis an embedding of C in D if it is fully faithful and the object part of Fis injective. O

We should note that the term embedding, as applied to functors, is defined differently by
different authors. Some authors define an embedding simply as a full and faithful functor.
Other authors define an embedding to be a faithful functor whose object part is injective. We
have adopted the strongest definition, since it applies directly to the important Yoneda lemma
(coming later in the book).

Note that a faithful functor F: C = D need not be an embedding, for it can send two
morphisms from different hom sets to the same morphism in D. For instance, if FA = FA’ and
FB = FB' then it may happen that

Ffsp=Fgap

which does not violate the condition of faithfulness. Also, a full functor need not be surjective
on Mor(C).

A Couple of Examples

Here are a couple of examples of functors. We will give more examples in the next chapter.

= Example 9

The power set functor : Set = Set sends a set A to its power set £(A) and sends each set
function f: A — B to the induced function f: (A) — §(B) that sends X to fX. (It is
customary to use the same notation for the function and its induced version.) It is easy to see
that this defines a faithful but not full covariant functor.

Similarly, the contravariant power set functor F': Set = Set sends a set A to its power set
$(A) and a set function f: A — B to the induced inverse function f~': @(B) — P(A) that
sends X C Bto f~'X C A. The fact that F'is contravariant follows from the well known fact
that

(fog) '=glof! o
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Concrete Categories

= Example 10

The following situation is quite common. Let C be a category. Suppose that D is another
category with the property that every object in C is an object in D and every morphism
f:A— BinCisamorphism f: A — Bin D.

For instance, every object in Grp is also an object in Set: we simply ignore the group
operation. Also, every group homomorphism is a set function. Similarly, every ring can be
thought of as an abelian group by ignoring the ring multiplication and every ring map can be
thought of as a group homomorphism.

We can then define a functor F': C = D by sending an object A € C to itself, thought of as
an object in D and a morphism f: A — B in C to itself, thought of as a morphism in D.

Functors such as these that “forget” some structure are called forgetful functors. In
general, these functors are faithful but not full. For example, distinct group homomorphisms
f»g: A — Bare also distinct as functions, but not every set function between groups is a group
homomorphism.

For any category C whose objects are sets, perhaps with additional structure and whose
morphisms are set functions, also perhaps with additional structure, the “most forgetful”
functor is the one that forgets all structure and thinks of an object simply as a set
and a morphism simply as a set function. This functor is called the underlying-set functor
U:C = SetonC. O

The Category of All Small Categories

As mentioned earlier, it is tempting to define the category of all categories, but this does not
exist on foundational grounds. On the other hand, the category SmCat of all small categories
does exist. Its objects are the small categories and its morphisms are the covariant functors
between categories. Of course, SmCat is a large category.

Concrete Categories

Despite the two main tenets of category theory described earlier, most common categories do
have the property that their objects are sets whose elements are “important” and whose
morphisms are ordinary set functions on these elements, usually with some additional struc-
ture (such as being group homomorphisms or linear transformations). This leads to the
following definition.

= Definition

A category C is concrete if there is a faithful functor F: C = Set. Put more colloquially, C is

concrete if the following hold:

1) Each object A of C can be thought of as a set FA (which is often A itself). Note that distinct
objects may be thought of as the same set.

2) Each distinct morphism f: A — B inC can be thought of as a distinct set function Ff: FA —
F'B (which is often f itself).

3) The identity 1 4 morphism can be thought of as the identity set function F1: FA — FA and
the composition f o g inC can be thought of as the composition Ff o Fg of the corresponding
set functions. O
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12 Chapter 1- Categories

Categories that are not concrete are called abstract categories. Many concrete categories
have the property that F'A is A and F'f is f. This applies, for example, to most of the previously
defined categories, such as Grp, Rng, Vect and Poset. The category Rel is an example of a
category that is not concrete.

In fact, the subject of which categories are concrete and which are abstract can be rather
involved and we will not go into it in this introductory book, except to remark that all small

categories are concrete, a fact which follows from Yoneda’s lemma, to be proved later in
the book.

Subcategories

Subcategories are defined as follows.

= Definition

Let C be a category. A subcategory D of C is a category for which consists of a nonempty subclass
Obj(D) of Obj(C) and a nonempty subclass Mor(D) of Mor(C) with the following properties:
1) Obj(D) C Obj(C), as classes.

2) Forevery A,B € D,

homp(A, B) C hom¢(A, B)
and the identity map 1, in D is the identity map 1, in C, that is,
(1a)p = (14)¢
3) Composition in D is the composition from C, that is, if

ffA—B and ¢g:B—C

are morphisms in D, then the C-composite g o f is the D-composite g o f.
If equality holds in part 2) for all A, B € D, then the subcategory D is full. O

= Example 11
The category AbGrp of abelian groups is a full subcategory of the category Grp, since the
definition of group morphism is independent of whether or not the groups involved are
abelian. Put another way, a group homomorphism between abelian groups is just a group
homomorphism.

However, the category AbGrp of abelian groups is a nonfull subcategory of the category
Rng of rings, since not all additive group homomorphisms f: R — S between rings are ring
maps. Similarly, the category of differential manifolds with smooth maps is a nonfull subcate-
gory of the category Top, since not all continuous maps are smooth. O
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Subcategories

The Image of a Functor
Note that if F: C = D, then the image F'C of C under the functor F; that is, the set

{FA|Aec}
of objects and the set
{Ff|f€home(A,B)}

of morphisms need not form a subcategory of D. The problem is illustrated in Figure 3.

Figure 3

In this case, the composition F'(g) o F'(f) is not in the image F'C. The only way that this
can happen is if the composition g o f does not exist because f and g are not compatible for
composition. For if g o f exists, then

F(g) o F(f)=F(go f) € FC

Note that in this example, the object part of F'is not injective, since F{A) = F{C) = X. This is
no coincidence.

= Theorem 12
If the object part of a functor F: C = D is injective, then FC is a subcategory of D, under the
composition inherited from D.

= Proof

The only real issue is whether the D-composite Fg o F'f of two morphisms in F'C, when it
exists, is also in F'C. But this composite exists if and only if

Ff:FA— FB and Fg: FB— FC
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14 Chapter 1- Categories

and so the injectivity of F'on objects implies that

fifA—-B and ¢g:B—C

Hence, g o f exists in C and so

F(g9) o F(f)=F(go f) € FC

Diagrams

The purpose of a diagram is to describe a portion of a category C. By “portion” we mean one or
more objects of C along with some of the arrows connecting these objects.

Informally, we can say that a diagram in C consists of a class of points (or nodes) in the
plane, each labeled with an object of C and for each pair (A, B) of nodes a collection of arcs
from the node labeled A to the node labeled B, each of which is labeled with a morphism from
Ato B.

The simplest way to form a diagram is with a functor—any functor.

= Definition
Let J and C be categories. A J-diagram (or just diagram) in C with index category J is a
functor J: J = C. O

Since the image J(7) is indexed by the objects and morphisms of the index category 7, the
objects in J are often denoted by lower case letters such as m, n, p, q. Figure 4 illustrates this
definition.

Figure 4

Observe that, as in this example, the image J(.7) need not be a subcategory of C. In this
example, J sends n and p to the same object in C but since o and 3 are not compatible for
composition, the image of J need not contain the composition .J3 o Jo. Thus, the image of a
functor simply contains some objects of C as well as some morphisms between these objects.

It is worth emphasizing that any functor F': J = Cis a diagram and so we have introduced
nothing new other than a point of view and some concomitant terminology.
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Diagrams

The Digraph-Based Version of a Diagram

Of course, another way to view the diagram (functor) in Figure 4 is simply to label the nodes
and arrows of the index category J with the images of the objects and morphisms of 7 under
the functor J, as shown in Figure 5. This description of a diagram has the disadvantage that it
does not show as clearly as in Figure 4 the confluence of Jn and Jp, but it does have some
advantages, as we will see later in the book.

Figure 5

Because generally speaking, the sole purpose of the objects and morphisms of the index
category is to uniquely identify the nodes and arcs of the diagram, Figure 5 is really little more
than a digraph whose nodes and arcs are labeled with objects and morphisms from C,
respectively. Here is the formal definition of a labeled digraph, along with some terminology
that we will need later in the book.

= Definition

1) A directed graph (or digraph) D consists of a nonempty class V(D) of vertices or nodes and
for every ordered pair (v, w) of nodes, a (possibly empty) set A(v, w) of arcs from v to w. We
say that an arc in A(v, w) leaves v and enters w. Two arcs from v to w are said to be parallel.
The arcs from v to v are called loops.

2) The cardinal number of arcs entering a node is called the in-degree of the node and the
cardinal number of arcs leaving a node is called the out-degree of the node. The sum of the
in-degree and the out-degree is called the degree of the node.

3) A labeled digraph D is a digraph for which each node is labeled by elements of a labeling
class and each arc is labeled by elements of a labeling class. We require that parallel arcs have
distinct labels. A labeled digraph is uniquely labeled if no two distinct nodes have the same
label and no two distinct arcs have the same label. O

A directed path (or just path) in a labeled digraph D is a sequence of arcs of the form
e € A(’U],’Uz),ez S A(Uz,’v_?,), Lo, €6p—1 € .A(Un,| s Un)
where the ending node of one arc is the starting node of the next arc. The length of a path is the
number of arcs in the path.

Thus, to create what we will call the digraph version of a diagram, we first draw a digraph
whose nodes are labeled with the distinct objects of the index category [J and whose arcs are
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16 Chapter 1- Categories

labeled with the distinct morphisms of 7, subject to the obvious condition that the morphism
f: A — Blabels an arc from the node labeled A to the node labeled B. This is referred to as the
underlying digraph for the diagram.

Then, as shown on the right in Figure 6, we further label the nodes and arcs of the digraph
with the image of the functor J. Note that the labels from the index category 7 are distinct, but
the labels from C are not necessarily distinct (in the previous example, Jn = Jp). This view of a
diagram will be useful when we define morphisms between diagrams.

Jm Ja Jn
e — > o e — > o
m o n m [0} n
[ JENGY ) Jpo i) qu
p B q P B q
underlying diagram
graph J:J>>C

Figure 6

Note that if the object part of the functor J is not injective, then two distinct nodes of the
underlying graph will be labeled with the same object in C. Although this is useful on occasion
(we will use it precisely once), for most applications of diagrams (at least in this book) the
object part and the local arrow parts of .J are injective and so the nodes and arcs are uniquely
labeled from C.

Since as we have remarked, the purpose of the objects and morphisms of the index category
is to uniquely identify the nodes and arcs of the underlying digraph, once the graph is drawn on
paper, the nodes and arcs are uniquely identified by their location and so the labels from 7 are
not needed and are typically omitted. This is why diagrams are often drawn simply as in

Figure 7, for example.
B
/
s
C

Figure 7

We will use blackboard letters D, E, F, ... to denote diagrams and if we need to emphasize
the functor, we will write

D(J: J =C)
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Special Types of Morphisms

Commutative Diagrams

We consider that any directed path in a diagram is labeled by the composition of the
morphisms that label the arcs of the path, taken in the reverse order of appearance in the
path. For example, the label of the path

A=>B-=C
in Figure 7 is g o f.
A diagram D in a category C is said to commute if for every pair (A4, B) of objects in D and
any pair of directed paths from A to B, one of which has length at least two, the corresponding
path labels are equal. A diagram that commutes is called a commuting diagram or commuta-

tive diagram.
For example, the diagram in Figure 1 commutes since

proT=o01 and p,oT =0y

Note that we exempt the case of two parallel paths of length one so that a diagram such as the
one in Figure 8 can be commutative without forcing f and g to be the same morphism. The
commutativity condition for this diagram is thus foe=g o e.

f
E%A?B

Figure 8

Special Types of Morphisms

For functions, the familiar concepts of invertibility (both one-sided and two-sided) and
cancellability (both one-sided and two-sided) are both categorical concepts. However, the
familiar concepts of injectivity and surjectivity are not categorical because they involve
the elements of a set.

In the category Set, morphisms are just set functions. For this particular category, the
concepts of right-invertibility, right-cancellability and surjectivity are equivalent, as are
the concepts of left-invertibility, left-cancellability and injectivity. However, things fall apart
totally in arbitrary categories. As mentioned, the concepts of injectivity and surjectivity are not
even categorical concepts and so must go away. Moreover, the concepts of invertibility and
cancellability are not equivalent in arbitrary categories!

Let us explore the relationship between invertibility and cancellability for morphisms in an
arbitrary category. In the exercises, we will ask you to explore the relationship between these
concepts and the noncategorical concepts of injectivity and surjectivity, when they exist in the
context of a particular category.

We begin with the formal definitions.
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18 Chapter 1- Categories

= Definition

Let C be a category.

1) A morphism f: A — B is right-invertible if there is a morphism fr: B — A, called a right
inverse of f, for which

fefr=18p

2) A morphism f: A — B is left-invertible if there is a morphism f: A — B, called a left
inverse of f, for which

frof=1a

3) A morphism f: A — B is invertible or an isomorphism if there is a morphism f~': B — A,
called the (two-sided) inverse of f, for which

Jlof=14 and fof'=1p
In this case, the objects A and B are isomorphic and we write A ~ B. O

Note that the categorical term isomorphism says nothing about injectivity or surjectivity, for
it must be defined in terms of morphisms only!

In fact, this leads to an interesting observation. For categories whose objects are sets and
whose morphisms are set functions, we can define an isomorphism in two ways:
1) (Categorical definition) An isomorphism is a morphism with a two-sided inverse.
2) (Non categorical definition) An isomorphism is a bijective morphism.

In most cases of algebraic structures, such as groups, rings or vector spaces, these
definitions are equivalent. However, there are cases where only the categorical definition is
correct.

Figure 9

For example, as shown in Figure 9, let P = {a, b} be a poset in which a and b are
incomparable and let @ = {0, 1} be the poset with 0 < 1. Let f: P — @ be defined by fa =
0 and fb = 1. Then f is a bijective morphism of posets, that is, a bijective monotone map.
However, it is not an isomorphism of posets!

Proof of the following familiar facts about inverses is left to the reader.
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= Theorem 13

1) Two-sided inverses, when they exist, are unique.

2) If a morphism is both left and right-invertible, then the left and right inverses are equal and
are a (two-sided) inverse.

3) Ifthe composition f o g of two isomorphisms is defined, then it is an isomorphism as well and

(fog) '=glof! 0

= Definition
Let C be a category.
1) A morphism f: A — B is right-cancellable if

gof=hef = g=h

for any parallel morphisms g, h: B — C. A right-cancellable morphism is called an epic
(or epi).
2) A morphism f: A — B is left-cancellable, if

fog:foh = g=h

for any parallel morphisms g, h: C' — A. A left-cancellable morphism is called a monic
(or a mono). O

In general, invertibility is stronger than cancellability. We also leave proof of the following
to the reader.

= Theorem 14

Let f, g be morphisms in a category C.

1) f left-invertible = f left-cancellable (monic)

2) fright-invertible = f right-cancellable (epic)

3) finvertible = f monic and epic.

Moreover, the converse implications fail in general. O

It is also true that a morphism can be both monic and epic (both right and left cancellable)
but fail to be an isomorphism. (Hint: Check the examples of categories given earlier). On the
other hand, one-sided cancellability together with one-sided invertibility (on the other side, of
course) do imply an isomorphism.

= Theorem 15

Let f: A — B be a morphism in a category C.

1) If fis monic (left-cancellable) and right-invertible, then it is an isomorphism.

2) If fis epic (right-cancellable) and left-invertible, then it is an isomorphism. O
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20 Chapter 1- Categories

Initial, Terminal and Zero Objects

Anyone who has studied abstract algebra knows that the trivial object (the trivial vector space
{0}, the trivial group {1}, etc.) often plays a key role in the theory, if only to the point of
constantly needing to be excluded from consideration. In general categories, there are actually
two concepts related to these trivial or “zero” objects.

= Definition

Let C be a category.

1) An object I € C is initial if for every A € C, there is exactly one morphism from I to A.

2) An object T is terminal if for every A € C, there is exactly one morphism from A to T.

3) An object that is both initial and terminal is called a zero object. O

Note that if C' is either initial or terminal then hom(C, C) = {1¢}. The following simple
result is key.

= Theorem 16
Let C be a category. Any two initial objects in C are isomorphic and any two terminal objects in C
are isomorphic.

= Proof

If A and B are initial, then there are unique morphisms f: A — B and g: B — A and so
g o f€hom(A, A) = {14}. Similarly, f o ¢ = 15 and so A =~ B. A similar proof holds for
terminal objects. O

= Example 17
In the category Set, the empty set is the only initial object and each singleton-set is terminal.
Hence, Set has no zero object. In Grp, the trivial group {1} is a zero object. O

Zero Morphisms

In the study of algebraic structures, one also encounters “zero” functions, such as the zero
linear transformation and the map that sends each element of a group G to the identity element
of another group H. Here is the subsuming categorical concept.

= Definition
Let C be a category with a zero object 0. Any morphism f: A — B that can be factored through
the zero object, that is, for which

J="hop°ga

for morphisms h: 0 — B and g: A — 0 is called a zero morphism. O

To explain this rather strange-looking concept, let us take the case of linear algebra, where
the zero linear transformation z: V' — W between vector spaces is usually defined to be the map
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Duality

that sends any vector in V'to the zero vector in W. This definition is not categorical because it
involves the zero element in W. To make it categorical, we interpose the zero vector space {0}.
Indeed, the zero transformation z can be written as the composition z = h o g, where

g:V—{0} and h:{0} - W

Here, both g and h are uniquely defined by their domains and ranges, without mention of any
elements. The point is that g has no choice but to send every vector in Vto the zero vector in {0}
and h must send the zero vector in {0} to the zero vector in W. Using ¢ and h, we can avoid
having to explicitly mention any individual vectors!

In the category of groups, the zero morphisms are precisely the group homomorphisms
that map every element of the domain to the identity element of the range. Similar maps exist
in CRng and Mod.

It is clear that any morphism entering or leaving 0 is a zero morphism.

= Theorem 18

Let C be a category with a zero object 0.

1) There is exactly one zero morphism between any two objects in C.

2) Zero morphisms “absorb” other morphisms, that is, if z: A — B is a zero morphism, then so
are f o zand z o g, whenever the compositions make sense. O

Duality

The concept of duality is prevalent in category theory.

Dual or Opposite Categories

For every category C, we may form a new category C**, called the opposite category or the dual
category whose objects are the same as those of C, but whose morphisms are “reversed”, that is,

homew (A, B) = home(B, A)

For example, in the category Set’” the morphisms from A to B are the set functions from
B to A. This may seem a bit strange at first, but one must bear in mind that morphisms are not
necessarily functions in the traditional sense: By definition, they are simply elements of the
hom-sets of the category. Therefore, there is no reason why a morphism from A to B cannot be
a function from B to A.

The rule of composition in C°, which we denote by o, is defined as follows: If
f € homew (A, B) and g € home (B, C), then

goop [ €homem (A, C)

ms@ms.lt



22 Chapter 1- Categories

is the morphism f o g € homg(C, A). In short,
go° opf =fog

Note that (C?)°* = C and so every category is a dual category.

It might occur to you that we have not really introduced anything new, and this is true.
Indeed, every category is a dual category (and conversely), since it is dual to its own dual. But
we have introduced a new way to look at old things and this will prove fruitful. Stay tuned.

The Duality Principle

Let p be a property that a category C may possess, for example, p might be the property that C
has an initial object. We say that a property p°F is a dual property to p if for all categories C,

C has p® iff C has p

Note that this is a symmetric definition and so we can say that two properties are dual (or not
dual) to one another. For instance, since the initial objects in C®® are precisely the terminal
objects in C, the properties of having an initial object and having a terminal object are dual. The
property of being isomorphic is self-dual, that is, A = B in C if and only if A ~ B in C*.

In general, if s is a statement about a category C, then the dual statement is the same
statement stated for the dual category C°?, but expressed in terms of the original category. For
example, consider the statement

the category C has an initial object

Stated for the dual category C*¥, this is

the category CP has an initial object

Since the initial objects in C°? are precisely the terminal objects in C, this is equivalent to the
statement

the category C has a terminal object

which is therefore the dual of the original statement.

A statement and its dual are not, in general, logically equivalent. For instance, there are
categories that have initial objects but not terminal objects. However, for a special and very
common type of conditional statement, things are different.

Let IT = {g; | i € I} be a set of properties and let [I= {q;¥ | i € I} be the set of dual
properties. Let p be a single property. Consider the statement

1) If a category C has II, then it also has p (abbreviated IT = p).

Since all categories have the form C° for some category C, this statement is logically
equivalent to the statement

2) If a category C°® has I1, then it also has p.

and this is logically equivalent to
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New Categories From Old Categories

3) If a category C has I1°, then it also has p°F (abbreviated IT°? = p°F).
The fact that
M=p iff % = p®

is called the principle of duality for categories. Note that if IT is self-dual, that is, if IT = I1°,
then the principle of duality becomes

M=p iff M= p®

Of course, the empty set of properties is self-dual. Moreover, the condition () = p means that all
categories possess property p. Hence, we deduce that

if all categories possess a property p, then all categories also possess any
dual property p°®

For example, all categories possess the property that initial objects (when they exist) are

isomorphic. Hence, the principle of duality implies that all terminal objects (when they exist)
are isomorphic.

New Categories From Old Categories

There are many ways to define new categories from old categories. One of the simplest ways is
to take the Cartesian product of the objects in two categories. There are also several important
ways to turn the morphisms of one category into the objects of another category.

The Product of Categories

If B and C are categories, we may form the product category B X C, in the expected way.
Namely, the objects of B x C are the ordered pairs (B, C), where B is an object of B and C
is an object of C. A morphism from B x C'to B’ x (' is a pair (f, g) of morphisms, where
f: B— B and ¢g: C — C'. Composition is done componentwise:

(f,9) o (h,k) = (foh,gok)

A functor F: A x B=-C from a product category A x B to another category is called a
bifunctor.

The Category of Arrows

Given a category C, we can form the category of arrows C— of C by taking the objects of C~
to be the morphisms of C.
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A——>B

Al—> B

Figure 10

A morphism in C ", that is, a morphism between arrows is defined as follows. A morphism
from f: A — Bto g: A — B’ is a pair of arrows

(a: A— A, B: B— B)
in C for which the diagram in Figure 10 commutes, that is, for which
goa=pof
We leave it to the reader to verify that C™ is a category, with compositon defined pairwise:
(v:8) o (@, ) = (vea, 60 )

and with identity morphisms (14, 15).

Comma Categories

Comma categories form one of the most important classes of categories and they should be
studied carefully since we will encounter them many times in the sequel. To help absorb the
concept, we will define the simplest form of comma category first and then generalize twice.

Arrows Entering (or Leaving) an Object

The simplest form of comma category is defined as follows. Let C be a category and let A € C.
In this context, the object A is referred to as a source object. The category of arrows leaving
the source object A, denoted by (A — C) has for its objects the set of all pairs,

{(B,f: A— B)|BecC} (19)

The objects B are referred to as target objects. Note that there is in general only one source
object but many target objects. For pedogogical reasons, we will refer to the pairs (19) as
comma objects.
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New Categories From Old Categories

Note that since a morphism uniquely determines its codomain, we could have defined the
objects of (A — C) to be just the morphisms f: A — B themselves but it is customary to
include the codomains explicitly.

Figure 11

The morphisms
a: (B,ftA— B)— (C,g: A—C)

in the comma category (A — C) are defined by taking the morphisms «: B — C'in C between
the target objects for which the triangle shown on the left in Figure 11 commutes, that is, for
which

aof=g (20)

and changing the domain and codomain to (B, f: A — B) and (C, g: A — C), respectively.
Note that although some authors say that a morphism from (B, f: A — B) to (C, g: A — C) is
a morphism a: B — C that satisfies (20), this is not quite correct, since the two morphisms
have different domains and codomains. To temporarily help clarify this distinction, we will
write @ for the morphism in the comma category, but will drop this notation quickly, since
other authors do not use it at all.

Now we can define composition in the comma category by

Gof=acp

whenever o o 3 is defined. As to the identity on an object (B, f: A — B), we have

lgeca=1goa=a and aolg=aclg=a

and so 1p is the identity morphism for the object (B, f: A — B). We leave a check on
associativity to you. The category of arrows leaving A is also called a coslice category.

Dually, the category (C — A) of arrows entering a target object A has for its objects the
pairs

{(B,f:B— A)|BeC}
and as shown on the right in Figure 11, a morphism

a:(B,f:B— A)— (C,g:C — A)
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26 Chapter 1- Categories

in (C — A) comes from a morphism «: B — C'in C for which

gea=f

by changing domain and codomain. The category of arrows entering A is also called a slice
category. In this case, there is only one target object A and many source objects B.

The First Generalization

There are many occassions (in fact, most occassions) when we would like to exercise
control over what types of objects can be the target objects in a comma category. This is
accomplished using a functor. Specifically, as shown in Figure 12, let F': C = D be a functor
and let A € D be a source object.

‘
F ‘ ‘ F
C D C D

Figure 12

As shown on the left in the figure, the objects of the comma category (A — F) are the pairs
{(C’,f:A—>FC’|C€C} (21)

whose target objects FC' come from the image of the category C under the functor F. Again for
pedological reasons, we will refer to the pairs (21) as comma objects.

As a quick example, suppose we wish to consider group homomorphims f: A — R from a
fixed abelian group A (the source) into the additive portion of various rings R (the targets).
To accomplish this, we use the forgetful functor ': Rng => AbGrp to forget the multiplicative
structure of a ring and so our morphisms take the form f: A — FR for R € Rng.

As to morphisms in the comma category (A — F), as shown on the right in Figure 12, a
morphism

a: (C1, f1: A— FCy) — (Ca, fr: A — FC,)
comes from a morphism a: C; — C in C between “pre-target” objects with the property that
Fao fi = f,
with the appropriate change in domain and codomain. Note that the comma category (A — C)
defined earlier is just (A — I¢), where I¢ is the identity functor on C.

Dually, we can define the comma category (F' — A) by reversing the arrows. Thus, a
comma object in (F' — A) is a pair
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(C,f: FC — A)
consisting of a source object C and an arrow from FC to the target object A. A morphism
(0N (C],fli FC] — A) — (Cz, f2I FCz — A)

effects a change in source objects, which is accomplished by a morphism «a: C; — C, between
“pre-source” objects for which

froFa=f

The Final Generalization

As a final generalization, we can allow both the source and the target objects to vary over the
image of separate functors. Specifically, let F': B = Dand G: C = Dbe functors with the same
codomain. As shown in Figure 13, an object of the comma category (F'— () is a triple

(B,C,f: FB — GC)

where B € B, C' € C and f is a morphism in D.

Figure 13

As to morphisms, as shown in Figure 14,

BL>p)
B

Figure 14
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28 Chapter 1- Categories

a morphism from (B, C, f: FB — GC) to (B’, C’, f': FB' — G(C") is a pair of morphisms
(a: B— B',3:C— ()
for which the square commutes, that is,
GBof=foFa
The composition of pairs is done componentwise.

= Example 22

Let C be a category and let F': C = Set be a set-valued functor. The objects of the category of
elements Elts(F) are ordered pairs (C, a), where C' € Cand a € FC. A morphism f: (C, a) —
(D, b) is a morphism f: C'— D for which Ff (a) = b. We leave it to the reader to show that this
is a special type of comma category. O

Hom-Set Categories

Rather than treating individual arrows as the objects of a new category, we can treat entire
hom-sets

{hom¢ (4, X) | Xec}

as the objects of a category C(A, —). As to the morphisms, referring to the left half of Figure 15,
lethom¢(A, X)andhom¢(A,Y') be hom-sets. Then for each morphism f: X — YinC, there is
a morphism

f 7 :home(A, X) — home(A,Y)

defined in words as “follow by f,” that is,

(@)= fea
for all @ € hom¢ (A4, X).
A A
hom¢(A,X) homc(A,Y) hom¢(X,A) hom(Y,A)
N <+
X fH Y Xﬁ Y

Figure 15
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The Categorical Product

We can also define a category C(—, A) whose objects are
{hom¢(X,A) | X € C}

As shown on the right half of Figure 15, for each morphism f: X — YinC, there is a morphism
in C(—, A) from hom¢(Y, A) and hom¢ (X, A):

f7:home(Y, A) — home(X, A)
defined by “preceed by f,” that is,
fla)=aof

Note that any category C can be viewed as a hom-set category by adjoining a new initial “object”
« not in C and defining a new morphism f4: * — A from * to each object A € C. Then each
object A € C can be identified with its hom-set hom(x, A). Also, the morphisms f: A — BinC
are identified with the morphisms

f7:hom(x, A) — hom(x, B)

of hom-sets.

The Categorical Product

Recall that in Example 8, we tried to motivate the categorical perspective by describing how the
external direct product of vector spaces can be defined using morphisms (linear
transformations) rather than elements. The key to this description is the projection maps.

At this point, we want to generalize this example, so that we can use it in further examples
and exercises. We will revisit this again in more detail in the chapter on cones and limits, so we
will be brief here.

Here is the formal definition of the product for general categories.

X
3!65
f V) g
AxB
AN
A B

Figure 16

= Definition
Let C be a category and let A, B € C, as shown in Figure 16. A product of A and B is a triple

(Ax B,p;: Ax B— A,p;y AXx B— B)
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30 Chapter 1- Categories

where A x B is an object in C and p, and p, are morphisms in C with the property that for any
triple

(X, f: X—A,9: X — B)

where X € C, there exists a unique map 0: X — A x B, called the mediating morphism for
which the diagram in Figure 16 commutes, that is, for which

pretl=f and p,of0=g
The maps p, and p, are called the projection maps. O

Of course, by now you realize that the projection maps are critical to the concept of a
categorical product. However, although it is quite misleading, it is common practice to denote a
product simply as A x B, without explicit mention of the projection maps. It can be shown, as
we will do later, that all products of A and B are isomorphic.

It follows from the definition that two morphisms «, 3: X — A x B into a product are
equal if and only if

proa=pof and poa=p,of

This is a common application of the uniqueness of the mediating morphism (and worth
remembering!).

Here are some simple examples of the categorical product. It is interesting to note that the
familiar product of groups, rings and vector spaces, for example, is an example of the same
categorical concept as the upper bound in a poset!

= Example 23

1) In Set, the product is the cartesian product, with the usual projections.

2) In Grp, Mod, Vect and Rng, the product is the usual direct product of groups, modules,
vector spaces and rings, defined coordinatewise.

3) In Poset(P), the product is the least upper bound. |

If a category C has the property that every pair of objects in C has a product, which is the
case for Grp, Mod, Vect and Rng but not for Poset(P), we say that C has binary products. On
the other hand, the category Field does not have products.

As mentioned, we will go into more details about the product in a later chapter. For now,
this is all you need to know to handle any subsequent discussions.

The Product of Morphisms

We can use the categorical product to define the product of morphisms in a category. Let C be
a category with binary products and let fi: A; — Bj and f,: A, — B, be morphisms in C. We
wish to define the product morphism
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The Categorical Product

f1 x fr: (A1 X Az, 0, 00) — (B X By, 81, 55) (24)

where the maps «; and [3; are the corresponding projection maps for the two products.

Let us “discover” the definition using some typical categorical reasoning, which we will call
the mediating morphism trick so we can refer to it again later in the book. The mediating
morphism trick is this: To get a map from any object X into a product such as B; X B,, we
simply define two maps §;: X — B; and d,: X — B, from X into the components of the
product and then invoke the definition of product! This definition says that there is a unique
(mediating morphism) map 7: X — B, x B, for which

ﬁIOT:(Sl and ﬂZOT:CSz

So, to use the mediating morphism trick to get a map from A; x A, to B; X B,, all weneed isa
pair of maps: one from A; x A, to B, and one from A, x A, to B,.
The whole story is shown in Figure 17.

A xA,
OLLZ |
A A
T

\4
B,xB

&Al m‘Bz

Figure 17

We have the projections «;: A; x A, — A; and the maps f;: A; — B;, whose compositions
gives us the desired maps from A; x A, to the components B; and B,. Hence, there is a unique
map (24) for which

Bro(fixfr)=fiear and Byo(fyx fy)=from (25)
Equations (25) define the product f; x f5.
Note that in categories where the product is a cartesian product of sets and the projections

are ordinary projection set functions, these equations give the coordinates of the ordered pair
(fi x f2)(z1, 25) and so

(f1 > o) (@, m2) = (fi(21), f2(22))

as we would hope. However, in more unusual categories, we must rely on Equations (25).
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Exercises
1. Prove that identity morphisms are unique.
2. Does the following description form a cateogry C? Explain. Let the objects of C be A and
B and let the hom sets be
hom(A, A) = {14}, hom(B,B) = {15}
hom(A4, B) = {f}, hom(B,A)={g,h}
3. If F: C = D is fully faithful, prove that
FC=FC' = CO=C(C
4. Indicate how one might define a category without mentioning objects.
5. A category with only one object is essentially just a monoid. How?
6. Let V'be a real vector space. Define a category C as follows. The objects of C are the
vectors in V. For u, v € V, let
hom(u,v) = {a € R | there is r > 1 such that rau = v}
Let composition be ordinary multiplication. Show that C is a category.
7. a) Prove that the composition of monics is monic.
b) Prove that if f o g is monic, then so is g.
c) Prove that if f o g is epic, then so is f.
8. Find a category with nonidentity morphisms in which every morphism is monic and epic,
but no nonidentity morphism is an isomorphism.
9. Prove that any two initial objects are isomorphic and any two terminal objects are
isomorphic.
10. Find the initial, terminal and zero objects in Modz and CRng.
11. Find the initial, terminal and zero objects in the following categories:
a) Set x Set
b) Set™
12. In each case, find an example of a category with the given property.
a) No initial or terminal objects.
b) An initial object but no terminal objects.
¢) No initial object but a terminal object.
d) An initial and a terminal object that are not isomorphic.
13. Let D be a diagram in a category C. Show that there is a smallest subcategory D of C for
which D is a diagram in D.
14. Let C and D be categories. Prove that the product category C x D is indeed a category.
15. A Boolean homomorphism g: £2(B) — §(A) is a map that preserves union, intersection

and complement, that is,
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16.

17.

18.

19)

g(U
g(ﬂ

9(B)

1

B;
B;

—— ——
Nl

By)

1

Q

|
~
F\

For the contravariant power set functor F': Set = Set, show that the image PS = F'(Set) is

the subcategory of Set whose objects are the power sets §(A) and whose morphisms are

the Boolean homomorphisms g: £2(B) — §(A) satisfying ¢(B) = A

Let F': B= D and G: C = D be functors with the same codomain.

a) Let R be a commutative ring with unit. Show that the category (R — CRng) is the
category of R-algebras.

b) Let ¢ be a terminal element of a category C. Describe (C — t).

Show by example that the following do not hold in general.

a) monic = injective
Hint: Let C be the category whose objects are the subsets of the integers Z and for which
hom (A4, B) is the set of all nonnegative set functions from A to B, along with the
identity function when A = B. Consider the absolute value function o: Z — N.

b) injective = left-invertible
Hint: Consider the inclusion map x: Z — Q between rings.

) epic = surjective
Hint: Consider the inclusion map x: N — Z between monoids.

d) surjective = right-invertible
Hint: Let C' = (a) be a cyclic group and let H = (a?). Consider the canonical projection
map m: C — C/H = {H, aH}.

Prove the following:

a) For morphisms between sets, monoids, groups, rings or modules, any monic is
injective. Hint: Let f: A — X be monic. Extend the relevant algebraic structure on
A coordinatewise to the cartesian product A x A and let

S = {(a,b) cAxA | f(a) :f(b)}

Let p;:.S — A be projection onto the first coordinate and let p,: S — A be projection
onto the second coordinate. Apply f o p; to (a, b) € S.

b) For morphisms between sets, groups or modules, epic implies surjective. Hint: suppose
that f: A — X is not surjective and let / = im(f). Find two distinct morphisms
p,q: X — Ythatagreeon I, then p o f= g o fbut p # ¢, in contradiction to epicness.
(For groups, this is a bit hard.)

¢) However, for morphisms between monoids or rings, epic does not imply surjective.
Hint: Consider the inclusion map x: N — Z between monoids and the inclusion map
k: Z — Q between rings.

(For those familiar with the tensor product) We want to characterize the epimorphisms in

CRng, the category of commutative rings with identity. Let A, B € CRng and f: A — B.

Then B is an A-module with scalar multiplication defined by

ab = f(a)b
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for a € A and b € B. Consider the tensor product B ® B of the A-module B with
itself. Show that f is an epic if and only if 1 ® b = b ® 1 for all b € B. Hint: any ring
map A\: A — R defines an A-module structure on R.

Let C be a category with a zero object. Show that the following are equivalent:

1) C'is an initial object.

2) C'is a terminal object.

3) 1o =0cc

4) hom¢(C,C) = {0cc}

Image Factorization Systems

An image factorization system for a category C is a pair (£, M) where
a) €& is a nonempty class of epics of C, closed under composition.

b) M is a nonempty class of monics of C, closed under composition.

¢) Any isomorphism of C belongs to £ and M.

d) Every morphism f: A — B can be factored as f =m o e where m € M and e € €.

Moreover, this factorization is unique in the following sense: If f = m/ o ¢’ with

m’ € M and ¢ € E, then there is an isomorphism 6: I — J for which the following
diagram commutes:

thatis, § o e = ¢ and m’ o § = m.

Figure 18

21.
22.
23.

Find an image factorization system for Set.
Find an image factorization system for Grp.
Prove the diagonal fill-in theorem: Let (5 , M) be an image factorization system. Let

f:A— Cand g: B— D be morphisms in C and let e € £ and m € M, with the square
in Figure 19 commutes.
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e
A——>B
e
/
f E|h/ g
/
yra
C—~———>D
m
Figure 19

Then there exists a unique morphism h: B — C' for which the diagram in Figure 19
commutes.
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Functors and Natural Transformations

S. Roman, An Introduction to the Language of Category Theory, Compact Textbooks
in Mathematics, DOI 10.1007/978-3-319-41917-6_2, © The Author(s) 2017

Let us now take a closer look at functors, beginning with some additional examples.

Examples of Functors

We have already discussed the power set functor and the forgetful functor. Let us consider
some other examples of functors.

= Example 26

1) For a given positive integer n, we can define a matrix functor F,,: CRng = Grp sending a
commutative ring R to the general linear group GL,,(R) of nonsingular n x n matrices
over R. Each ring homomorphism f: R — S is sent to the map that works elementwise on
the entries of a matrix.

2) Another functor G: CRng = Grp is defined by setting GR = R", the group of units of
Rand Gf=f

homomorphism maps units to units. i

g+ for any ring homomorphism f: R — S. This makes sense since a ring

= Example 27

If P is a poset, then a nonempty subset D of Pis a down-set if d € D and « < d imply that
x € D. Let Poset be the category of all posets. Define the down-set functor O: Poset = Poset
as follows. A poset Pis sent to the family O(P) of all down-sets in P, ordered by set inclusion.
If f: P— (@ is a monotone map, then the inverse image of a down-set in () is a down-set in
P and so we may take O(f): O(Q) — O(P) to be the induced inverse map f~". Since

15" = lowp)
and
(go ) =f"og!
it follows that O is a contravariant functor on Poset. |

= Example 28

Let A € C and consider the comma category (C — A) of arrows entering A. Each object of
(C — A) is an ordered pair (X, f: X — A), as X ranges over the objects of C. The domain
functor F: (C — A) = C sends an object (X, f: X — A) to its domain X and a morphism
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a: (X, f: X—4) - (Y,0:Y = A)
which is a map a: X — Y satisfying
goa=f

to the underlying morphism «. Thus Fa = a. We leave it to you to show that F is indeed a
functor. O

= Example 29

Here is a functor tongue-twister. Let C be a category. We can define a functor F': C = SmCat
that takes an object A €C to the comma category (C — A) € SmCat, with target object A. For
this reason, we might call the functor F an target functor (a nonstandard term). A morphism
f+ A — A’ between target objects in C must map under F'to a functor, that is,

fid—4 = Ffi(C—4)=(C— 4

between the relevant comma categories. As shown on the left in Figure 20, the object portion of
Ff must take an object (C, a: C' — A) in (C — A) to an object in (C — A’). We take

Ffl(C,a: C — A) = (C,foa:C — A

and so Ff is essentially the “follow by f” map f on objects.

u (Fflu=u
C——>C cC——>C

NS NS
|

A

Figure 20
As to the arrow part, as shown on the right in Figure 20, recall that a morphism
u: (C,a: C — A) — (C',3: C' — A)
in (C — A) comes from a qualifying morphism u: C' — C, that is, a morphism for which

ﬁou:a
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Now, F'f must take @ to a morphism
(Ff)(@): (C.foa:C— A’y = (C',f o B: C" — A)
But
(foBou=foa
implies that u is also qualifying for the pair
P=(C,foa:C—4"),(C',fop:C"— A"))
so we can take
(Ff)(@) =u

where the overbar on the right means give u the domain and codomain in P.
We will leave it to you to show that Ff is indeed a functor and then that F'is also a
functor! i

= Example 30
Let C be a category with binary products. We define the squaring functor as follows. For each
object A, fix a product (A x A, p;, p,) of A with itself. Let F': C = C send A to A x A.

For a morphism f: A — B in C, we want to define an appropriate morphism

Ff: (Ax A, py.py) = (BX B,oy,0)

This clearly calls for the mediating morphism trick. So we need a couple of maps: one from
A x A to By and one from A x A to B,.

The two compositions f o p;: A x A — B;fori =1, 2 will do the trick. Specifically, there
is a unique mediating morphism

0:AxA— BxB

as shown in Figure 21,

AxA
fop, 3!9,5 fop,

17
B x

IR

B B

Figure 21
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for which
oiobyp=fop
Let F/f = 0. Then Ff is uniquely defined by the conditions
oio Ff=fop(i=1,2)

It is clear that F1 4 = 14, because we have fixed a single product for each pair of objects. Also, if
f: A— B, g: B— C and the product for C'is (C x C, 71, 7,), then

Tio(Fge Ff)=geojoFf=go fop =TioF(gof)
for all i and so Fg o Fif = F (g o f). Thus, F'is a covariant functor on C. O

= Example 31
Let C be a category with binary products. To define a product functor

F:CxC=C

we must assume that for every pair (X, Y) of objects in C, we have selected a product
(X XY, (1, ¢)

The product functor F takes an object (A4;, A,) to its chosen product (A; x A,, o, ;) and a
morphism

(f1:12): (A1, A2) — (B1, Ba)
to the product morphism
fix far (Ar x Ay, a1, 00) = (Br X Ba, 31, 3,) (32)
recall that f; X f; is defined as the unique morphism satisfying the conditions
Bro(fixfr)=fiear and Byo(fixfy)=[freom

To see that F is a functor, we must first show that 14, X 14, is the identity 14,x4, on A; X A,
and for this, we use (32). Since

apolyxa =140ar and ap ol =14, °m
the uniqueness condition implies that

F(la,1g) =14 x 1p=1axp

ms@ms.lt



41 2

Examples of Functors

As to composition, suppose that
g1 X gt (B1 X B, 81, 3,) = (C1 x C2,71,72)
Then

Fl(91,9) © (fi, f2)] =Fl(g1 © fi,92° [2)] = (g1 ° f1) X (92 © [f2)

Hence, by definition, the map h = F[(¢1, g2) © (f1, f»)] is the unique map for which
yioh=(gi° fi)oar and v, 0h=(g° f)om
The uniqueness conditions implies that we need only show that the map
k=F[(g1,92)] o F[(f1, f2)] = (91 X g2) © (f1 x f2)
also satisfies these equations, that is, that
Yellgrxg)e (fixf)l=(gefi)ea
and
o[(gr xg) o (fi x )] =(g2° f2) e
As to the first of these equations, we have

Y10 [(g1 X g2) o (f1 x f2)] = (g1 © B1) o (f1 x f2)
= g1 ° (810 (f1 x f2))
=g1°(fiea)

as desired. The second equation is proved similarly. i

We have saved the most important example of a functor (at least from the perspective of
category theory itself) for last.

= Example 33
One of the most important classes of functors are the hom functors, shown in Figure 22. Let C
be a category and let A € C. We refer to A as the source object for the hom functor.

A
hom(A,X) hom(A,Y) hom(X,A) hom(Y,A)
&
hom(A,) hom(,A) r
X —) Y X If) Y

Figure 22
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The covariant hom functor
hom(A4, - ):C = set
sends an object X € C to the hom-set of all morphisms from the source object A to X,
hom(4, - )(X)=hom(A,X)
and it sends a morphism f: X — Y to the “follow by f” map,
hom(A, - )f=f~
Thus,
f7:hom(A,X) — hom(A,Y)
is defined by
ffr=for
for any 7: A — X. This functor is covariant precisely because
(go )" =g o f”

Covariant hom functors are also called covariant representable functors.
Dually, the contravariant hom functor

hom( -, A): C = set

is defined by
hom( -, A)(X) =hom(X, A)

for all XeC and

hom( -, A)(f) = f~
where 7 is the “preceed by f” map,

fTr=7of

for any 7: Y — A. This functor is contravariant precisely because

(gof)"=f"eyg”

Contravariant hom functors are also called contravariant representable functors.
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Morphisms of Functors: Natural Transformations

Let C and D be categories. We would like to form a new category, denoted by D, whose objects
are the functors from C to D. But what about the morphisms between functors?

Consider a pair of parallel covariant functors F,G: C = D, as shown in Figure 23. As
discussed earlier in the book, we think of F'and G as mapping one-arrow diagrams.

F/ FA—">Fg
A—">B M he
G\ GA———>GB
Gf
C D

Figure 23 A natural transformation

A structure-preserving map between F' and G is a “map” between the image one-arrow
diagrams

FALLFB and Gf: A%l 6B
As shown in Figure 23, this is accomplished by a family of morphisms in D
A={\: FA— GA|AeD}
for which the square in Figure 23 commutes, that is,
Gfody=Ago Ff
The family A is called a natural transformation from F'to G.

= Definition
Let F',G: C = D be parallel functors of the same type (both covariant or both contravariant).

A natural transformation from F to G, denoted by \: F— G or {\a}: F — G is a family of
morphisms in D

A={X: FA— GA| AeD}

for which the appropriate square in Figure 24 commutes. Specifically, if F'and G are covariant,
as shown on the left in Figure 24, then

ApoFf=GfoM
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forany f: A — BinCand if F and G are contravariant, as shown on the right in Figure 24, then

)\AOFf:GfO)\B

forany f: A — B inC. Each morphism A, is called a component of \. It is customary to say that
A4 is natural in A from F'to G. We denote the class of natural transformations from F to G by

Nat(F, G). We also use the notation A(A) for A4 when it is more convenient. O
Ff Ff
F_ FA——>FB Fy B >FA
~ .
A f% B A‘A ?\-B A 9 B 7\’B 7\’A
G\A GA———> GB G GB—>CA
Gf
C D C D

Figure 24 Natural transformations

Some authors refer to the function A\: A » A 4 that maps an object A € C to the component
A4 as a natural transformation as well.

Intuitively Speaking

Intuitively speaking, we can think of a natural transformation as follows. If f: A — Bis a
morphism in C, then let us think of F'f and G f as two different versions of f. Then the natural
transformation condition

AgoFf=Gfol

is a kind of commutativity rule, for it says that we can swap A (actually, an appropriate
component of \) with one version of f provided we change the version of f.

An Example

Let us do an example.

= Example 34 (The determinant)

Fix a positive integer n. As shown in Figure 25, consider two parallel functors G, U: CRng =
Grp defined as follows. The functor G sends a ring R to the general linear group GL,(R)
and a morphism f: R — S to the map f applied elementwise to the elements of a matrix,
which we denote by f,,
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G: R GL,(R), G:(f:R— S)e (f,: GL,(R) — GL,(S))

The functor U sends a ring R to its group R* of units and a ring map f to the restricted map
fu: R* — §7, which makes sense since a ring map sends units to units,

U:R~»R, U (ffR—=S)~»(f:R" =8

So we have two versions of the ring map f: apply f to matrices elementwise and apply f to
units. Can you think of some operation {) 4} that “commutes” with these two versions of f, that
is, for which

)\Sofe:fuo)\R

for f: R — S?
Well, the determinant does not care whether it is applied before or after a ring map f, more
precisely, before f,, or after f., in symbols,

det(f,A) = f,(det(A))

Thus,
detg o f, = f o dety
which says that {detp | R € CRng} is natural in R. O
Gf
G GL,(R) —> GL.(S)
R L) S dety det,
U\ R > &
Uf
CRng Grp

Figure 25 The determinant is natural

We will do some additional examples in a moment.
Composition of Natural Transformations
Natural transformations can be composed by composing corresponding components.

In particular, if A\: F— G and p: G — H are natural transformations, then the composition
o A: F— H is defined by
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(BoA)y=pg0°r

We leave it to the reader to show that the composition of natural transformations is a natural

transformation. Also, the identity natural transformation 1: F'— Fis defined by specifying that

1(A) = 1p4

Natural Isomorphisms

Suppose that A\: F— G is a natural transformation from F to G, where each component
Aa: FA = FB is an isomorphism. The condition that A is natural is

Apo Ff=GfoA
Applying A" on the left and A\ ;' on the right gives

FfoX' =)' oGf

Thus, the family p = {/\;11 | AeC } is a natural transformation from G to F, thatis,u: G — F.
Moreover, (1 © A =1 and A o i = 1 are the respective identity natural isomorphisms (each
component is an identity morphism).

Conversely, if \: F— G and pu: G — F are natural transformations for which p o A =
1 and A o = 1, then A4 is an isomorphism for all A€C.

= Theorem 35

Let \: F = G be a natural transformation. The following are equivalent:
1) Each component of X is an isomorphism.

2) There is a natural transformation p: G — F for which
poAd=1 and Nopu=1

where 1 is the appropriate natural isomorphism all of whose components are identity morphisms.

When these statements hold, we say that \ is a natural isomorphism and that F'and G are
naturally isomorphic, written \: F~G or F~G. When F and G are set-valued, we use the
notation <~ . in place of =, since the components are bijections in this case. O

More Examples of Natural Transformations

Let us consider some additional examples of natural transformations.
= Example 36 (The double-dual)

Let Vect be the category of vector spaces over a field &, with linear maps. We need a little
vector space theory for this example. As you probably know, the dual space V" of a vector
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space Vis the family of linear functionals on V. Hence, the double-dual space V™" is the family
of linear functionals on V*.
For example, if v € V; then the evaluation at v map v: V* — k defined by

for all f € V* belongs to the double dual V*". Let us set
ev: V=V e(v)=1
The operator adjoint 7 : W™ — V™ of a linear map 7: V — W is defined by
T(f)=fer
Therefore, the second adjoint 7 : V** — W™ is given by

T

T

a)=aoT”

fora € V',

In this case, we would like to find two versions of a linear map 7: V — W that commute
with evaluation.

We begin by looking at €y, o 7. If v € V; then

(ew o 7)(v) = ew(Tv) =TV
Now we want to massage this until evaluation pops out the front. Applying 7v to f € V" gives
To(f) = f(r(v)) =o(f o 1) =0(77(f)) = (We 77)(f)

and so

Thus,
(ew o T)0) =TT =T o 7" =777 (1) = 7~ (ev(v)) = ("~ o €r)(v)
and we finally arrive at

—

e oT=T _ O¢€y (37)
We can now put this in the language of natural transformations. Define a functor F: Vect =
Vect that takes a vector space V'to its double dual V** and a linear map 7: V— W to its double

adjoint,

F:VeV™ and F:re71
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Then (37) can be written as

FTOGVIEI/V olt

where [ is the identity functor on Vect. Thus, as shown in Figure 26, the family {ey | V € Vect}
is natural in V.

T
| V—————>W
VTHW/SV Ey
F\ *k *k
Vei———> W
T

Figure 26

This example is a little more abstruse than the determinant example. The determinant
example says that we can apply a ring map either before or after taking the determinant. This
example says that we can either follow a linear map 7 by evaluation or preceed its second
adjoint 7~ by evaluation. Whoever would have guessed that?

We leave it to you to show that the family is a natural isomorphism when restricted to the
category of finite-dimensional vector spaces. O

= Example 38 (The Riesz map)
For the category Vect, the dual functor G is defined by

GV=V" and Gr=171"

In examining the relationship between vector spaces and their duals, it is immediately clear that
there cannot be a natural transformation from the identity functor on Vect to the dual functor
on Vect because the identity functor is covariant but the dual functor is contravariant.

On the other hand, there is an important (and basis free) natural transformation for
finite-dimensional inner product spaces. Let FinInner be the category of finite-dimensional
real inner product spaces, with unitary transformations. A linear transformation o: V— Wis
unitary if it is a bijection and

(ou,v) = (u,0”'v)

The background we need here is the Riesz representation theorem. Define the Riesz map
Ry: V— V* by

Ry (v)(z) = (v, z)
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In words, Ry (v) is “inner product with v.” Because V is finite-dimensional, the Riesz
representation theorem says that Ry is an isomorphism and so each element of V™ has the
form Ry (v) = (v, -) for a unique v € V.

T
V —m—m™>W
Ry Rw
Vi S W
(_C—])—>
Figure 27

In an effort to find a commutativity rule involving the Riesz maps, we write for any v € V,

(RW o T)(U) = Rw(TU)

= (70, -)

and so
Ry o= (’7‘_1>H o Ry
This prompts us to make the following definition. Define the Riesz functor G by
GV=V" and G(r)=(r")"
where 7: V' — W is unitary. Then

RW or=GTo RV

and so the family {Ry| V € Finlnner} is natural. In words, we can swap the Riesz maps with
7and (771) 7.

= Example 39 (The coordinate map)
Let k be a field. For each nontrivial vector space V over k, choose an ordered basis By. Choose
the standard basis €, for the vector spaces k™. Let FinVectB™ be the category whose objects are
the ordered pairs (V, By). We will write V,, to denote the fact that V' has dimension n.

The morphisms 7: (V,,, By) — (W, By) are just the usual linear transformations
TV, — W,,.
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Now, the coordinate map is defined by
b,y Vi, By) = (K", &), ¢, 5,)(v) = [V,

where [v] ;. is the coordinate matrix of v with respect to By is an isomorphism.
The coordinate map can be used to define the matrix representation [7]; . of a linear map

7: V— W with respect to a pair of ordered bases 3 and C for V'and W, respectively. Recall that
this matrix satisfies the equation

[Tv] By — [7] By, Bw [v] By

where [z]; denotes the coordinate matrix of  with respect to BB. In terms of coordinate maps,
this can be written

S gy (V) = [7]5, 5, Pv.8,) (V)
or equivalently in terms of the matrix multiplication operator,
B © T = [Tlgy, By © Pv.5y) (40)

Now it is time for some functors, one being the identity functor I on FinVectB™. The other
functor G is the matrix representation functor defined by

G(V,,By) = (K", &)
and
Gt = [T]BV,BW

(We leave it to you to check that this is a covariant functor.)
Then (40) becomes

By 1T =GT 0 by )

which shows (see Figure 28) that the family {qﬁ(vﬂ By) | Ve FinVectB*} is natural in V.

l
V. B,) ——>(W..2,) /d)v,gv Pue,

T~~~

G K.&) —7 > (K'.&)

vV, 8) ——>(W,,3,)

Figure 28 The coordinate maps are natural
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In words, to swap factors in the composition ¢y 3,) © 7, replace 7 by its matrix
representation. O

=  Example 41 (Arrow part of functor is natural transformation between hom functors)

Let F': C = D be a functor and let AcC. If f: X — Yand g: A — X in C, then
F(fog)=FfoFyg
which can also be written in the form
F(f~(9) = ((Ff)™ ° F)(9)
and so
Fof =(Ff) oF

This shows that the square in Figure 29 commutes.

homg(A,*)(f)=f~

hom,(A,*) hom (A,X) > hom,(A)Y)
f:X—>Y F F
hom,(FA,*) hom,(FA,FX) > hom,(FA,FY)

hom,(FA,*)(Ff)=(Ff)"
Figure 29

It follows that the arrow parts

Fx:homg(A, X) — homp(A4, FX)

of the functor F actually form a natural transformation from the hom functor hom¢ (A4, -) with
source A to the hom functor homp(F A, F) with source FA, in symbols

F:home(A, - ) >homp(FA,F -)

We will refer to this natural transformation by the name arrow part of F. i
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hom hom(B,X) —)hom (B,Y)

h:X—)Y f:A—B f

D(A .) = hom,(A,X) —)homD(A Y)

Figure 30

= Example 42 (Any morphism defines a natural transformation between hom functors)
Let C be a category and let f, h and o be morphisms in C for which the composition exists

hoao f

Because composition is associative, this composition can be written in two ways using the hom
functors as follows

7 (h (@) =hoao f=hL"(f7(c))
and so
frohT=h o f”

Thus, the square in Figure 30 commutes and so the morphism f: A — B defines a natural
transformation

{f7}: hom¢(B, - ) > home(A4, -)

where each component is f (applied to the appropriate domain). We will see a bit later that
all natural transformations between hom functors have this form. O

Natural Isomorphisms and Full Faithfulness

It is not surprising that a natural isomorphism of functors preserves fullness and faithfulness.
We leave proof of the following as an exercise.

= Theorem 43
1) Let '~ G be naturally isomorphic functors.
a) Fis faithful if and only if G is faithful.
b) Fis full if and only if G is full.
In particular, if F~I¢, then F is fully faithful.
2) Let F': C = D and G:D = C be functors.
a) If G oF'is faithful, then Fis faithful.
b) If G oF'is full, then G is full.
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In particular, if
GoF~I, and FoG=Ip

then F and G are fully faithful. O

Functor Categories

As mentioned earlier, if C and D are categories, we would like to form the category D¢, whose
objects are the functors from C to D and whose morphisms are the natural transformations
between functors. The only problem is that our definition of category requires that each
hom-set be a set, but the class of natural transformations between two functors need not be a
set. This issue can be resolved by requiring C to be a small category, that is, by requiring that
Obj(C) be a set. From now on, when we use the functor category D, it is with the tacit
assumption that C is small.

= Example 44
Let 2 be the category whose objects are 0 and 1 and whose morphisms are 15, 1; and 01:
0 — 1. Then each functor F': 2 = Dessentially just selects an arrow F(01): F(0) — F(1) of D.

Moreover, a natural transformation {Ag, A }: F'— G is a pair of morphisms in D, as shown in
Figure 31.

F(01)
F FO —— F1
01 /x A
0 ———>1 0 1
G\ GO—> G1
G(01)
2 D

Figure 31
Hence, the functor category D?, whose objects are the functors F: 2 = D and whose

morphism are the natural transformations {\g,A;}: F— G between functors is just the
category D~ of arrows of D. O

The Category of Diagrams

If C is a small category, the family of all diagrams J: J = C in C over a particular index
category J form the objects of a new category diay(C). The morphisms f: F'= G from
diagram J: J = Cto diagram G: J = C are simply the natural transformations from J to G.
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We can draw a picture of a morphism

{M}:D—-E

from diagram DD to diagram E as shown in Figure 32. For this to represent a morphism, the
square must be commutative.

Figure 32

The category of diagrams will prove to be quite useful to us when we discuss universality

later in the book.

Natural Equivalence

Two categories C and D are said to be naturally equivalent if there are antiparallel covariant
functors F: C = D and G: D = C for which the compositions F' o G and G o F'are naturally
isomorphic to the corresponding identity functors Ip and I¢. There is also a similar concept for
contravariant functors.

1)

2)

Definition
Two categories C and D are naturally equivalent if there are covariant functors F': C = D
and G: D = C for which

FoGalIp and Go FrI;
where Ip and I are identity functors.
Two categories C and D are dually equivalent (or dual) if there are contravariant functors
F:C= Dand G:D = C for which
FoGaIp and GoFwI
where Ip and I are identity functors. O

Note that the functors in this definition are fully faithful.

Example 45

Let us show that the category FinVect" of nonzero finite-dimensional vector spaces over a field
k and the matrix category Matr), are naturally equivalent. We assume that for each vector space
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Vin FinVect”, an ordered basis By is chosen and that for the vector spaces k", the chosen basis
is the standard basis &,,.

The dimension functor dim: FinVect" = Matr, sends V to its dimension and sends each
linear transformation 7: V,, — W,, to the m x n matrix [7] of 7 with respect to the chosen
ordered bases for V,, and W,,,,

To see that dim is a functor, note that dim(1y) is the identity matrix and if 7: U — Vand 0: V—
W then

dim(o7) = (073, 5, = [9]s,.5,[T]5,.5, = dim(c)dim(T)
In the other direction, consider the map

exp: Matr;, = FinVect"

that takes a positive integer n to the vector space k™ and an m x n matrix M: n — m to the
multiplication by M map, denoted by fi,:

M exp Hag
n—m = k'—=k"

Since p; = 1y and ppn = par fons it follows that exp is also a functor.
The composition dim o exp: Matr;, = Matr, is the identity functor, since for any positive
integer n,

dim o exp(n) = dim(k") =n
and for any m X n matrix M,
dim o exp(M) = dim(y1y;) = [pafle, e, = M

The composition exp o dim is the matrix representation functor, since

7

exp o dim(V,,) = exp(n) = k"
and for : V— W,
exp o dim(7) = exp ([T]BV,BW) = Hp

Thus, dim o exp is the identity functor whereas exp o dim, while not equal to the identity
functor, is naturally isomorphic to the identity functor. Hence, FinVect" and Matr,, are
equivalent categories. O
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Natural Transformations Between Hom Functors

Let us speak about natural transformations between hom functors. Let C be a small category.
Recall that for each A € C, the covariant hom functor

home (A4, -): C = set
with source A is defined by
home(A, - )(X) =home(4, X)
and for each f: X — YinC,
hom(A, -)f = fy

where we have used subscripts to remind us to which domain the “follow by f” map applies.
Figure 33 shows the diagram for a natural transformation A\ between two hom functors.

homg(A.®)  hom (AX)— > hom.(A,Y)

f
X ——>Y A A,

hom(B,e) homC(B,X)Thomc(B,Y)

Figure 33
The naturalness condition is the commutativity of the square, that is,
fEoAx=Aro fy (46)
Taking X = A and applying this to the identity 14 gives
(fi o Aa)(1a) = (Ar o f) (1a)
or
F5(Aa(la)) = Ay(f o 1a)
or (replacing Y'by X),

o (Aa(la)) = Ax(f)
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or finally,
Ax(f) = [Aa(1)]7(f)

for all f: A — X. Hence,

Ax = Pa(la)]”
for all f: A — X. Thus, all natural transformations have the form

A= {hy { Xec}
where

h=2Xa(la) € hom¢(B, A)

Note that all of the components hy of A do the same thing (preceed by h) but to different
domains, so they are different morphisms.

Conversely, if h € hom¢ (B, A), then the family {4} is natural from hom¢(A4, ) to hom¢
(B, -) because for any : A — X,

fgohx(g9)=1fe(gehx) and hy o fy(g) = (feog)ehx

which are equal precisely because composition is associative. Thus, we have completely
characterized the natural transformations between hom functors.

= Theorem 47
Let C be a category and let A, B € C. Then the natural transformations

A: home(4, -) = home(B, -)
between hom functors are precisely the families
A= {hy | XecC}
as h varies over the set home(B, A), where for X € C, the X-component of ),
hy: home(A, X) — home(B, X)

is “preceed by h on hom¢(A, X).” O

The Yoneda Embedding

Now that we understand the nature of natural transformations between hom functors, we can
define a rather important contravariant functor, called the Yoneda embedding

y: C = Set®
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as follows. To each object A € C, we associate the covariant hom functor home(A4,-) with
source A. Thus, the object part of y is

y(A) =home(4, )

The arrow part of y maps a morphism h: B — A to a natural transformation between hom
functors and Theorem 47 gives us the “natural” choice

y(h) = {h™}: hom¢(4, - ) —home(B, -)
To see that y actually is a contravariant functor, note that
y(la) = {15}
is the identity natural transformation and that
ylgoh)=(goh)” =h"og” =y(g) o y(h)
It is customary to view y as a covariant functor,
y: C = Set®

from the opposite category C* to the functor category Set’, or equivalently, as a covariant
functor

op

y: C = Set®

However, lest all of these opposite categories give you a headache, we will leave the functor
1y alone and live with its contravariance.

= Theorem 48
Let C be a category. The contravariant functor y: C = Set defined by

y(A) =home(4, -) and y(h) ={h”}: home(4, - ) —home(B, -)

for all AeC and all h € home(B, A) is a contravariant embedding of C into the functor
category Set’, called the Yoneda embedding of C in Set’.

= Proof

We must show that y is an embedding, that is, that the object part of y is injective and that the

local arrow parts of y are bijective. The object part of y maps A to hom¢(A4, -) and since hom¢

(A, -) and hom¢ (B, -) are distinct for distinct objects A and B, the object part of y is injective.
To get the local arrow part of y, we fix A, B € C to get the map

Ya,p: home(B, A) — Nat(home (A, - ),home(B, -))
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given by
yap(h) = {hy | X€C}: hom¢(4, ) —home(B, -)

We have already proven that y, p is surjective, that is, that all natural transformations
from hom¢(A,-) to home(B, ) have the form {h™}. As to injectivity, if y 5(h) = ya 5(k)
for h,k: B — A, then

{iix | xeC} = {i | XeC)
In particular, for the components associated with X = A, we can apply them to 1,4 to get
lyoch=140k

and so h = k. Thus, the local arrow parts of y are injective and the Yoneda embedding is indeed
an embedding. O

The Yoneda embedding states that any category C can be (contravariantly) embedded
in the functor category SetC of set-valued functors on C. In other words, each object A €C can
be represented as a hom functor hom¢(A, -) and each morphism as a natural transformation
between hom functors.

To help remember the contravariant Yoneda embedding, we can also think of it as
the source embedding. Specifically an object A€C is used as the source of the hom functor
hom¢(A4,-) and a morphism h: B — A is used to change the source from A to B, since the
embedding is contravariant. But to change the source from A to B, we must preceed by h.

= Example 49

It is said that the Yoneda embedding is a vast generalization of Cayley’s theorem of group
theory. Cayley’s theorem says that any group G can be embedded in a permutation group.
Specifically, for a € G, right translation by a is defined by

Pt G — G, p,(9) =ga
Cayley’s theorem says that the map
sz"SG’ P(a) = Pa

is an embedding of G into the permutation group Sg.

Now recall that the group G can be thought of as a category G with just one object,
namely G itself. Moreover, each element a € G is a morphism a: G — G and composition of
morphisms is the group product of elements.

Since G has only one object, it has only one hom functor

hom(G, - ): G = Set
defined by

hom(G, - )G =hom(G, G) = U(G)
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where U (G) is the underlying set of G (that is, G thought of simply as a set) and for a € G,
hom(G, - )a =a"
The contravariant Yoneda embedding y: G — Set? is
y(G) =hom(G, - ), y(a) ={a”}
where
a”(b) = ba = p,(b)
forall b € G and so

y(G) =hom(G, -),  y(a) = {p.}

foralla € G.
But in this case, since there is only one object G, their is only one component in the family
{p.} and so the arrow part of y is essentially just the Cayley embedding p. O

Yoneda’s Lemma

Yoneda’s lemma examines the nature of natural transformations from hom-set functors to
arbitrary set valued functors. With reference to Figure 34, let A € C and consider the hom
functor with source A,

hom¢(A, - ): C = Set

and any set-valued functor H: C = Set.
e
hom¢(A,) homg(A,X) ——>hom¢(A)Y)
X — >y A M

H\ HX > HY

7z

Figure 34

If
Arhome(A4, - )—>H

is a natural transformation, then for any f: X — Y,

Ay o [T =HfoAx

ms@ms.lt



61 2

Yoneda’s Lemma

As in the special case we discussed earlier, we take X = A and apply this to 14 to get
(after replacing Y'by X),

Ax(9) = (Hg)[Aa(14)] (50)
for any g: A — X. To simplify the notation, let
as =Aa(la)€H(A)
and so
Ax(9) = (Hg)aa

Let us refer to the element a4 € H(A), which completely characterizes the natural transforma-
tion A as the Yoneda representative of \.
On the other hand, for any element a € HA, the components Ay defined by

Ax(9) = (Hyg), (51)

for all X €C and for all gehom¢(A, X) form a natural transformation A = {\x}, because for
any f: X — Y,

(Are fT)g=Ar(feg)
=H(f° g)a
= (Hf° Hg)a
= Hf o [Ax(9)]

and so
Aro fT =HfoAx
Note that by taking X = A and g = 14 in (51), we get
a=MAs(14)

Thus, any element of H(A) is the Yoneda representative for some natural transformation A
from home¢ (A4, ) to H.

= Theorem 52 (Yoneda lemma, part 1)
Let C be a category and let H: C = Set be a set-valued functor.
1) The natural transformations
Arhome(A, -)—H
are precisely the maps defined by

Ax(g) = (Hg)a
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forall g: A — X, where a € H(A). The connection between \ and its Yoneda representative

a is given by

a=Aa(la)
2) The Yoneda representative map
6 = b, 4: Nat(home(A, -), H) — H(A)
defined by
P(A) = Aa(1a)

is a bijection. It follows that the class Nat(hom¢(A, -), H) is a set.
3) When H = home(B,-) is also a hom functor, the natural transformations

A: home(A, - ) —home(B, )
are precisely the families
A={\"}
as h varies over the set hom¢(B, A).

= Proof
We have already proved parts 1) and 3). For part 2), since

Ax(9) = (Hg)[Aa(14)]

it is clear that A4(14) = ¢()) uniquely determines A and so ¢ is injective. We have already seen
that it is surjective. O

There is another part to Yoneda’s lemma, which describes the naturalness of the families
{¢AIAEC}, where H is fixed and {¢A,H|H65etc}, where A is fixed

m  Theorem 53 (Yoneda lemma, part 2)
Let C be a category. The family of Yoneda representative maps

{¢y 4 Nat(home(A, - ), H) ~ H(A) | A€ C,H € Set”}

is natural in both H and A, as shown in the commutative diagram of Figure 35.
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Nat(hom¢(A,),H)

(LHSK) v (FA—B)

KA < HA >HB
n Hf

Figure 35

In particular:
1) For a fixed H: C = Set, the family of bijections

{#4: Nat(hom¢(4, - ),H) < HA| A€C}
is natural in A, as shown in Figure 36.
o
F Nat(hom¢(A,),H) ———> Nat(hom(B,"),H)

Af% B Oa g

H HA > HB
Hf

Figure 36
Specifically, define a functor F': C = Set as follows. If A € C then
F(A) = Nat(home (A4, - ), H)
Also, if f: A — BinC, then
F(f): Nat(home (A4, - ), H) — Nat(hom¢(B, - ), H)
is defined by
F(f)=1"
that is, if A = {\x ’ X eC} eNat(home(A,-), H), then

o) ={f"0x) | XeCl={Nxo f | XeC}
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Then
¢ F>H
2) IfC is a small category, then for a fixed A€C, the family of bijections
{6 Nat(home(A, - ), H) < HA| HeSet}

is natural in H, as shown in Figure 37.

£ Nat(homg(A,),H) L)Nat(homC(A,-),K)

~
H2> K O %
™

HA > KA
A

Figure 37

Specifically, define functors F,G: Set® = Set as follows. For any H € Set’, let
F(H) = Natthom¢(A, -),H) and G(H)=HA
and for any \: H->K in SetC,
FON) =X~ and G(\) =X
where A™ (1) = A o u. Then

oy F—>G

= Proof
For part 1), we must first show that if

{Ax}:home(A4, -)—H
then

{Ax o f"}:home(B, - )= H
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that is, we must show that for all g: X — Y,
HgoAlxof~ =Ayof og™
But the condition that X is natural is
Hgolx=Ayog™

and the result follows by applying f ™ and noting that g~ o f~ = f~ o g™

Now, the naturalness of ¢ 4: F'— H is
Hf opy=dpoFf
for all f: A — B in C. This is equivalent to
Hf o ¢s(X) = ¢po Ff(A)
for all A€Nat(home(A,-), H) and this is equivalent to
HfAa(1a)] = ¢p(Ae f7)
But
dp(Ao f7)=Ae fT)plp=Apo f1p=As(f)
and the Yoneda lemma implies that
Ap(f) = Hf[Aal4]

as desired.
For part 2), the naturalness condition we wish to verify is

Aa oo =g oA
But for p€ Nat(home (A4, ), H),
An o op(p) = Aalpa(la)]

and

G o AT (1) = PN o p) = (Ao p)(1a) = Aafpa(1a)]

Exercises

1. Show that contravariant functors are also covariant functors.
2. Is the forgetful functor from Grp to Set full? Is it faithful?
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. Let G be a group and let G’ be the commutator subgroup, that is, the subgroup generated

by all commutators aba™'b~", where a, b € G. Then G’ is a normal subgroup of G and
GIG' is abelian. Let F: Grp = AbGrp send G to G/G’ and send o: G — H to the map
Fo: G/G' — H/H' defined by

(Fo)(aG') = (ca)H'

a) Show that this defines a functor.

b) Modify the function F'slightly so that it maps into Grp and find a natural transforma-
tion from the identity functor I: Grp = Grp to F.

Find two distinct covariant functors from Grp to Grp both of whose object maps are the

identity.

For the category Grp, map each group to its commutator subgroup C(G) and each

homomorphism f: G — H to its restriction C'f: C(G) — C(H). Show that C'is a functor.

Show that the hom functor

home(A4, - ): C = Set
preserves monics, that is, if «: C — D is monic in C, then
a”:home(A, C) — home(A,D)
is also monic.
Describe the arrow part of the hom functor hom¢ (B, -) and the naturalness condition.
Let C be a category with binary products. Fix a product for each pair of objects in C. If

f:A— A’ and g: B— B, then define the product f x g: A x B— A’ x B’ as the unique
mediating morphism from the cone

(AxB,fopyp:AxB— A',gopyp, Ax B— B')

to the product A’ x B'. In other symbols,

a) Prove that
Iy X 1p=14xp
b) If f A— A and g: B— B and f": A’ — A” and ¢': B — B’ prove that
(f'ef)x(g'og)=(f"xg')o(feoyg)

or in different notation
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9.

10.

11.

flofo Paxp,1\ flo PA'xB'1 R fo PAxB,1
9'°g°paxpy 9" °panp2 9 ° PAxB,2
Let C be a category with binary products. Let A be an object in C and fix a product
C x A for every object C'in C. Define the product functor

- xA:C=C

sending Cto C x A and f: C — D to the product morphism

def < o pexan

fxly= :CxA—DxA
lepCXA,Z

where (yXA ) denotes the mediating morphism for a cone with legs « and y over the
XB

diagram {A, B}. Prove that this does define a functor.

Let B, C and D be categories. A functor H: B x C = D from the product B x C into a
category D is called a functor of two variables or a bifunctor. If B€ 3, the map Hp is
defined as follows: Hp takes an object C of C to H(B,() and takes a morphism g: C' — C'
to H(1p, ), where 15 is the identity morphism on . For any object C'in C, the map H is
defined analogously.

a) Show that Hg: C = D and H¢: B = D are functors.

b) Show thatif f: B — B’ and g: C' — C’, then

Hp(g) o Ho(f) = He(f) © Hp(g)

c) Suppose that for each object C'in C, there is a functor G¢: B = D and for each
object B in B, there is a functor F'z: C = D. Under what conditions is there a
bifunctor H: B x D = D for which Hg = Fzand H- = G2

Prove the following statements:

1) Let F = G be naturally isomorphic functors.

a) F'is faithful if and only if G is faithful.
b) F'is full if and only if G is full.
In particular, if F'~ I, then F'is fully faithful.

2) Let F': C = D and G: D = C be functors.

a) If G o F'is faithful, then F'is faithful.
b)If G o F'is full, then G is full.
In particular, if

GoF~I, and FoG~Ip

then F'and G are fully faithful.
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12.

13.

14.

15.
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Let F,G: C = D and let A(C'): F'— G be a natural transformation from F'to G.
a) Let H: £ = C. Let A\H: Obj(E) — Obj(C) be defined by

Show that A\H: FFH — G H is a natural transformation.
b) Let HA: Obj(£) — Obj(C) be defined by

Show that HX\: HF — HG is a natural transformation.
Let S be a nonempty set. A group with operators .S or an S-group is a group G together
with a homomorphism o: S — End(G) where End(G) is the group of endomorphisms
of G. Let M be a monoid, thought of as a category with one object, where each element of
M is a morphism. Show that the objects in the functor category Grp™ are the groups with
operators M.
Let A be an abelian group. The torsion subgroup A’ of A is the set of elements of A that
have finite order. The torsion functor G: AbGrp = AbGrp is defined by

GA=A
and for a group homomorphism f: A — B

Gf:f Ar:A[*)Bt

which makes sense since a group homomorphism maps torsion elements to torsion
elements.

a) Show that G is indeed a functor.

b) Find a natural transformation from the torsion functor G to the identity functor I.
Let FinSet be the category of all finite sets and let FinOrd be the category of all finite
ordinal numbers. The inclusion map I: FinOrd = FinSet is a functor, with I(f) =f, as a
set function. We define another functor Card: FinSet = FinOrd as follows. Card(.S) is the
unique finite ordinal that is equipotent to S. For the maps, for each finite set .S, we fix a
bijection g from S to Card(S), where if n is a finite ordinal then 6,, = 1 (the identity).
Then for a set function f: .S — T, the map Card(f): Card(S) — Card(T') is defined as

Card(f) =07 o f o 05"
a) Show that Card o I: FinOrd = FinOrd is the identity functor.

b) Show that I o Card: FinSet = FinSet is not the identity functor, but is naturally
isomorphic to the identity functor. Thus, FinOrd and FinSet are equivalent categories.
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16.

17.

18.
19.
20.

21.

22.

23.

Let S be a fixed set. Consider the map F'that sends each set X to X x S, where X* is the

set of all functions from S to a set X. Show that F'is the object map of a functor F'from Set

to Set. Find a natural transformation from F'to the identity functor on Set.

Let F',G: C = P be functors from a category C to a preorder P.

a) Describe necessary and sufficient conditions under which there is a natural transfor-
mation from F'to G.

b) Prove that if P and Q are preorders, then the functor category OF is also a preorder.

Verify that the functor category D¢ is a category.

Prove that the functor category D? is essentially the category of arrows D~ of D.

Show that the map that sends each group to its center cannot be the object map of a

functor from Grp to AbGrp. Hint: Consider the triangle formed by S, — 53 — S,.

A pointed set is a pair S, = (S, s) where s € S. Less formally, a pointed set is just a set that

contains a specially designated element. To simplify the notation, we let * denote this

element. Let Set, be the category whose objects are pointed sets and whose morphisms are

all set functions f: A, — B, for which f(x) = x. These are called pointed functions. Let

Set, be the category whose objects are sets and whose morphisms are partial set functions

f+ A — B, that is, the domain of f is a (possibly empty) subset of A. Prove that Set, and

Set, are isomorphic.

If Sis a set and s € S, we define the ordered pair (S, s) to be a set with base point (or a

set with distinguished element). Let Set, be the category of pointed sets (see the

previous exercise) and let C be the category of all sets with base point. Show that the map

F : Set, = C sending S, to (S,, *) and sending f: S, — T, to itself is a functor. Is it an

isomorphism?

a) Let F,G:C = D and let

A={Ac}: F5G
Then if H: D = &, then the composition
HoM:: FC — HGC
makes sense. Show that the family
HX={Ho )\ |CeC}

is natural from HF to HG.
b) If K: B = C, then for each B€ B,

Xkp: FKB — GKB

This is a form of “composition” of K followed by A. Show that the family
AH = {)\HB { BGB}

is natural from FH to GH.
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c)Let ,G: A= Band H,K: B= Candlet o: F— G and 3: H— K. Show that
Koy o fpg = fga o Hax
The Godement product 3 * « is defined by
(B*a)y:=Kago fBpa=Pgse HaA
Show that this defines a natural transformation from HF to KG. Show that the products
HM\ and AH are special cases of the Godement product.
24. Prove the contravariant case of Yoneda’s lemma.
25. Let C and D be categories and let ': C = D be a covariant functor. Show that the natural
transformations
)\A,B = {)\A,B(')}Z homc( ) A) %homD(F‘ ,B)
between contravariant functors have the form
Mp(X)f=(Ff)"g=geo Ff

for all f: X — A, where g € homp(F'A, B). In this case, g = A4 p(A)14 and so

M(X)f = (Ff) " Aap(A)la = A p(A)1s0 Ff
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in Mathematics, DOI 10.1007/978-3-319-41917-6_3, © The Author(s) 2017

The Universal Mapping Property

Let us recall the definition of a comma category (mid level of generalization). f G: D = Cis a
functor and C' € C is an (anchor) object, then the comma category (C' — @) is the category
whose objects are the pairs
(U,u: C — GU) (54)
for U € D. Moreover, a morphism
7: (U,u: C — GU) — (D, f: C — GD) (55)
between comma objects is essentially just a morphism 7: U — D in D for which

Grou=f (56)

(We have dropped the overbar notation 7.)
Therefore, referring to Figure 38, an initial comma object (54) has the defining property

that for any comma object (D, f: C' — GD), there is a unique morphism (55) for which (56)
holds.

Universal pair

C— u)
f G’cf G E E”Tf
v
GD D
C D

Figure 38

This property (or something equivalent) turns out to be critically important and has a
special name.

Universal Mapping Property (UMP): A pair (U, uc: C' — GU) has the universal mapping
property if for any morphism f: C' — GD, there exists a unique morphism 74: U — D inDfor
which the triangle in Figure 38 commutes, that is, for which
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GTf ouc = f (57)

It is worth mentioning that the presence of the functor G restricts the codomains of the maps in
question to the image GD. As we will see, this is an extremely valuable feature of these comma
categories.

The object U is known as a universal object, the map u is a universal map and the pair
(U, uc: C — GU) is a universal pair for (C, G). Thus, we can state that

a universal pair for (C, Q) is simply an initial comma object in (C' — G).

Note that the universal object U depends on both C and G, as does the universal map uc.

The Mediating Morphism Maps

For each D € D, the universal mapping property defines a function

7¢.p: home(C, GD) — homp(U, D)

Te.p(f) = Tf

forall f: C' — GD. Note that we have indexed 7 with both C'and D even though C'is fixed for
now. In the chapter on adjoints, we will allow C'to vary as well and it is better to get used to the
double indexing now rather than having to deal with it later, when more pressing issues are at
hand. For a fixed C' € C, the family of morphisms 7, 5 as D ranges over the objects in D will be
denoted by

{re.o}kp = {70 | D € D}
Some authors refer to the map 7y as the mediating morphism for f, although many authors do

not give 7y any special name at all. We will use this term and also make the following
nonstandard definition.

= Definition
Let G: D = C be a functor and let

U= U,uc:C— GU)
be a universal pair for (C, G). Then the mediating morphism map for U is the map

7¢,p: home(C, GD) — homp(U, D)
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defined for all f: C — GD by
Te.n(f) =75

where Ty is the unique mediating morphism for f. O

The definition and uniqueness of mediating morphisms implies that
Grep(f)euc=f and 7¢,p(Ghouc)=h

forall f: C' — GD and all h: U — D and so the mediating morphism map is bijective, with
inverse map

TE}D(h) =Ghouc (58)

for all h: U — D. Note also that the universal map is given in terms of the mediating
morphism map by

ue =75y (1v) (59)
In fact, we have the following characterization of mediating morphism maps.

= Theorem 60
A map

7¢.p: home(C, G, D) — homp(U, D)
is the mediating morphism map for a universal pair
U= U,uc: C — GU)
if and only if ¢ p is a bijection and
7! p(hu,p) = Ghu,p © uc (61)

= Proof
If 7¢ p is a bijection given by (61), then for any f: C' — GD, we have

Gre,p(f) cuc = f
and if

GhouC:f
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for any h: U — D, then applying the bijection 7¢, gives
te.p(f) =71e.0(Gh o uc) = 7¢.p(rc'p(h)) = h

Hence, 7¢,p(f) = 7y is the unique mediating morphism for f and so 7¢,p is the mediating
morphism map. O

A word about notation is in order. We have two choices when it comes to writing formulas
such as the one displayed in Theorem 60. We can write

T@}D(h) = Gh o uc
with the added condition that this holds for all A: U — D or we can simply write
TE‘}D(hU,D) = GhU'D o uc

with the tacit understanding that such a formula holds for all values of Ay, p.

Frankly, we see virtue in both formats. The first format is a bit easier to read, but it is also a
bit harder to follow, especially as the formulas become more complex and contain
compositions of maps. In any case, after much deliberation (and some vacillation), we have
settled on the more compact second format in most displayed equations, although we will use
the first format at times as well.

Naturalness of the Mediating Morphism Maps

One of the main virtues of the mediating morphism maps is that they show how the universal
mapping property is actually equivalent to a naturalness property. Another virtue is that they
will allow us to obtain a certain “dual symmetry” that leads naturally (both figuratively and
literally) to the notion of an adjunction (and left and right adjoints).

As to the naturalness property, let C' € C and suppose that

{r¢,p}p: hom¢(C, GD) « homp(U, D)
is a family of bijections and set
ue =75y (1v)
Then the maps 7¢ p are mediating morphism maps if and only if
Teip(@) = Gaoue (62)
for all : U — D. Moreover, (62) implies that for any h: D — I,

T&}D/(h oca)=G(hoa)ouc=GhoGaouc=Gho TE}D(O()

ms@ms.lt



75 3

The Mediating Morphism Maps

This shows that we may pull the map h outside of Tal (h o a) by replacing it with Gh.

Note that this formula is equivalent to (62), as can be seen by taking o = uc.
Moreover, since each 7o p is a bijection, as « varies over homp(U, D), the maps
[ =7¢!'p(a) vary over home(C, GD) and so (62) is equivalent to
Tolp(hee,n(f) =Ghof
for all f: C' — GD. Applying 7 r to both sides, this can be written in the form
(TC,D’ ° (Gh)7)(f) = (A~ o m¢,p)(f)
and so

Te,p © (Gh)” =h™ o1¢p (63)

on hom¢(C, GD).

hom,(C,G+) homC(C,GD)G—h>hOmC(C,GD’)
h:D—)D, ‘CC,D TC,D’

hom,(U,s)  hom,(U,D) e > hom,(UD)

D Set

Figure 39
Well, as shown in Figure 39, condition (63) says that the family
{r¢,p}p: home(C, G - )< homp(U, -)
is a natural isomorphism in D from the composite functor
home(C,G ) = home(C, - ) o G
to the hom functor homp(U, - ).

= Theorem 64
Let G: D= Candlet C € Cand U € D. Let

{r¢,p}p: hom¢(C, GD) < home(U, D)
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be a family of bijections and let
uc = ¢y (1v)
The following are equivalent:
1) (Mediating morphisms) The maps {7c p}p are the mediating morphism maps for the
universal pair (U, uc: C — GU), that is, Tc,p(fo.ap) is the unique solution to the equation
Gre.p(fe.ap) © uc = fo.ap
2) (Inverse fusion formula) The maps {7c, p}p satisfy

76 p(hu.p) = Ghy,p © uc

We will call this formula the inverse fusion formula.
3) (Naturalness in D) {7¢ p}p, is a natural isomorphism in D, that is,

TC,D/ o (GhD,D') = hB,D/ °TC,D
or equivalently (and of more practical use),

70,0 (Ghp,p © fe.ap) = hp.p © Te.0(fe.ap) O

The term “inverse fusion formula” is not standard. The term “fusion formula” does appear
in some literature, but refers to a formula that we will introduce later and call the “direct fusion
formula.” We use the term “inverse” here because this formula gives an expression for the
inverse of the mediating morphisms. The term “fusion” comes from the fact that these
formulas can be used to “connect” the concepts of left and right adjoint.

Examples

Let us turn to some examples of universality.

= Example 65 (Sets)
Perhaps the simplest example of universality comes when G is the identity functor on Set.
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c—4 vy
=
f !
Y
C D
Figure 40

With reference to Figure 40, a pair (U, u: C' — U) is universal for (C, I) if any set function
f:C — D can be uniquely factored through u, that is, if there is a unique set function 7:
U — D for which

Tfou:f (66)

Now, it is clear that (66) implies
f@) # fly) = u(x) # uly)

for z, y € C and since this applies to any set function f: C — D, it follows that u must be
injective.

Moreover, if u is not surjective, then any map 7y satisfying (66) can be changed by
changing the value of 7; on an element of U \ im(u) without affecting the validity of (66)
and so uniqueness will not hold. Therefore, u must be a bijection. Conversely, if u: C — Uisa
bijection, then (66) will hold for 7y = f o u ™.

Thus, a pair (U, u: C' — U) is universal for (C, I) if and only if u is a bijection. Incidentally,
this shows that neither universal maps nor universal objects are unique, although in this case
any two universal objects are equipollent, that is, isomorphic in Set. O

= Example 67 (Free Groups)

Consider the underlying-set functor G: Grp = Set, which sends a group to its underlying
set and a morphism to the underlying set function. Let X be a nonempty set. Then a pair
(U, u: X — U) where U is a group and u is a set function is universal for (X, G) if for any
set function f: X — D where D is a group, there is a unique group homomorphism 7p: U — D
for which

Tfou:f

as set maps.

Therefore, if X C U and if j: X — U is the inclusion map, then to say that the pair
(U, j: X — U) is universal is to say that every set function f: X — D where D is a group
can be uniquely extended to a group homomorphism from f: U — D. In this case, we say that
such a group U has the unique extension property with respect to the subset X.

Now, in treatments of group theory, free groups are defined in one of two ways. The more
elementary (or perhaps just less categorical) treatments tend to define the free group Fx as
the set of all words over the alphabet A = X U X!, under juxtaposition and the usual rules of
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exponents. It is then shown that the free group Fx has the unique extension property with
respect to X, that is, that the pair (Fy, j: X — F'x) is universal for (X, G).

In more advanced treatments (or perhaps just more categorical treatments), the free group
on X is defined as any group that has the unique extension property with respect to X. It is then
shown that the set of words over the alphabet A is one such group. In either case, the end result
is that the pair (Fy, j: X — Fl) is universal for (X, G).

= Theorem 68
Let G: Grp = Set be the underlying-set functor. Let X be a nonempty set, let Fx be the free
group on X and let j: X — Fx be the inclusion map. Then the pair

(X,5: X — Fx)
is universal for (X, G). O

= Example 69 (Vector space bases)

One could say, but never does, that a vector space V with basis B is a “free vector space” over

B. On the other hand, one often does say the following: Any linear map f: V — W is uniquely

determined by its values on the basis vectors in B and these values can be assigned arbitrarily.
But this is the same as saying that the pair

(V,j: B—1V)

where j is the inclusion map is universal for (B, GG), where G: Vect = Set is the underlying set
functor. O

= Example 70 (Field of quotients)

Let IntDom be the category of integral domains, with morphisms being ring embeddings
(monomorphisms). Let G: Field = IntDom be the forgetful functor, forgetting the fact that
every nonzero element of a field is a unit. Let R’ denote the field of quotients of an integral
domain R. Then

(R,j: R— R

where j is the inclusion map, is universal for (R, G). This amounts to saying that any ring
embedding f: R — F where F'is a field can be lifted in a unique way to the field of quotients
f: R — F. Thus, fields of quotients are universal objects. O

= Example 71 (Quotient spaces and canonical projections)

Let C be the category of all pairs (M, A) of R-modules, where A is a submodule of M. We call
C the category of modules with distinguished submodules. A morphism f: (M, A) — (N, B)
is a linear map f: M — N for which f(A) C B. Composition in C is composition of linear
maps. For if g: (N, B) — (P, C), then

(90 N)(A) =9(f(A) Cg(B)cC

ms@ms.lt



79 3

Examples

and so
go f: (M,A) — (P,0)

is @ morphism in C. Referring to Figure 41, let G: Modr = C be the functor that maps an
R-module M to (1M, {0}) and sends a linear map f: M — N to f: (M, {0}) — (&V, {0}).

(M,K) > (MK M/K
) i Gr, G i Alt,
v v
(N.{0}) N

Figure 41

Consider the pair

(M/K,{0}),7: (M, K) — (M/K,{0})) (72)
where 7 is the canonical projection. If f: (M, K) — (N, {0}), then

Grpom=f
if and only if
Tr(mK) = f(m)
for all m € M and so this will serve as the definition of 7, provided that it is well defined. But
mK=nK = m-neK = fim—-n)=0 = f(m)=f(n)

and so 77: M/K — N is a well defined module map. Thus, the pair (72) is universal. O

= Example 73 (The tensor product)
Let U x V be the cartesian product of two vector spaces over a field k. Let Vect" be the
category of all vector spaces over F with linear maps, to which is adjoined the object U x V,
as a set. The morphisms from U x V to a vector space W are the bilinear maps and there
are no morphisms from a vector space W to U x V. Also, hom(U x V, U x V) consists of
just the identity map.

Let G: Vect = Vect" be the inclusion functor. Then the tensor product

URV.EUXV-URV)
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where ¢ (u, v) = u ® v, is universal for (G, U x V). For if W is a vector space and
f: U x V— W is bilinear, then there is a unique linear map 7;: U ® V — W for which
7y o t = f. Thus, tensor products are universal objects. O

We have just seen that free groups, vector spaces, fields of quotients, quotient modules and
tensor products are all universal objects. Thus, all of these constructions are specific cases of the
same categorical concept—universality.

The Importance of Universality

The traditional method for defining a new mathematical “object” is to first describe what the
object is, that is, give its definition and then describe what it does, that is, describe its important
properties.

Traditional perspective: first definition, then properties.

However, a moment’s reflection shows that a definition is really only a means to an end and is
useless per se. The only reason to define a mathematical object is because that object has some
useful properties.

To illustrate, as we have seen, the pair (Fly, j: X — F'y) where F'y is the free group on the
set X satisfies the UMP. Moreover, this property characterizes the free group (up to isomor-
phism). Therefore, one could argue that the sole purpose for defining the free group in the
traditional element-based manner is to define an object that has this universal property.

Indeed, the categorical perspective is that the free group should be defined as any pair that
has this universal property.

Categorical perspective: definition by (univeral) property.

This reveals the fact that the concept of a free group is really a categorical concept, that is, a
property of morphisms and not elements, even though the traditional definition of free group is
all about elements and ignores maps entirely.

A similar argument can be made for the other examples of universal properties that we have
discussed, namely, vector space bases, quotient spaces, fields of fractions, tensor products as
well as a host of other common mathematical constructions.

Indeed, there are many other examples of defining an object by a universal property. One
example is the direct product of vector spaces described in » Example 8, which is an example of
a categorical construction. In fact, categorical constructions are nothing more or less than
universal pairs in a category of diagrams. We will discuss these constructions in a later chapter.

Uniqueness of Universal Pairs

Since universal pairs are defined as initial objects in a comma category, they are unique up to
isomorphism in that category.
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Uniqueness of Universal Pairs

= Theorem 74
Let G: D = Cand C € C and let

S=(S,u:C— GS)
be universal for (C, G). Then
T=T,v:C—GT)
is universal for (C, G) if and only if there is an isomorphism «: S ~ T in D for which

v=Gaou (75)

= Proof
Suppose first that S is universal and that a:: S ~ T satisfies (75). Then for any f: C' — GD,
there is a unique mediating morphism 7: S — D for which

Grrou=f
Then
G(Tfoofl) O’UZG(Tf oofl) oGaou=Gryou=f
and so 77 o o ' is a mediating morphism for 7. As to uniqueness, if Gu; o v = f then

sz,ufov:GufOGaou:G(pfoa)ou

and so the uniqueness of mediating morphisms for S implies that py o o = 74 and so
py =T o a ', proving uniqueness. Thus, 7 is universal.

For the converse, suppose that S and 7 are both universal. Then since v: C' — GT, the
universality of S implies that there exists a unique mediating morphism 7,: .S — T for which

Gryou=v

A similar argument shows that there exists a unique mediating morphism 7,: T — S for
which

Gryev=u
and so
v=Gryou=Gr,oGryov=G(r,0o1,)ov

Then the uniqueness of mediating morphisms implies that 7, o 7,, = ¢7. Similarly, 7, o 7, = ¢
and so 7, and 7, are both isomorphisms. Taking o = 7, gives (75). O

Note that universal morphisms are not unique in general, even for a single universal object.
For if
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S=(S,u: C — GS)

is universal for (C, G) and if v: C =~ C, then

U= (S,ucv:C— GS)
is also universal for (C, G). To see this, the universality of S applied to
uov:C—GS and uov':C— GS

implies that there are unique mediating morphisms 7,0,: S — Sand 7,0,-1: S — S for which

1

Gryuopou=uov and GTye1 ou=uov" (76)

Hence,
G(Tuow © Tyop 1) © U = GTyop © GTyop1 0 = GTyep U0 v =
and similarly,

G(Tyour1 © Tyop) © U = GTyop1 © GTyop © U = GTyop1 ©U OV =11

and so the uniqueness of mediating morphisms implies that 7., is an isomorphism. There-
fore (76) and Theorem 74 imply that is universal. O

Couniversality

The dual of the concept of an initial object in a comma category (C' — G) where G: D = Cis
the concept of a terminal object in a comma category (F' — D), where F: C = D is a functor.
This defines the couniversal mapping property (CMP) although many authors use the term
universal mapping property for this property as well. For later use, we have interchanged the
roles of the two categories.

= Definition
Referring to Figure 42, let F: C = D and let D € D.

S D<«—Y—Fs

:E”},lf F f F
C FC
C D

Figure 42
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Couniversality

The statement that the object (S, v: F'S — D) is terminal in the comma category (F' — D)
is the following:

Couniversal mapping property (CMP): For every f: F'C' — D, there is a unique ji;: C' — S
for which

f=voFu
In this case, the pair
V= (SuvFS—C)
is a couniversal pair for (D, F'), the object S is the couniversal object, the morphism v is the
couniversal morphism and pi; is the mediating morphism for f.

For a fixed D € D, the map

po, p: homp(FC, D) — home(C, S)

that sends each f: FC — D to its unique mediating morphism ;. C — S is called the
comediating-morphism map for the pair (D, C) with respect to the couniversal pair V. O

As before, the comediating-morphism map p¢ p is a bijection, defined by the condition
ve F(MC,D(f)) =f
for all f: FC' — D and with inverse is defined by
tic.p(h) =vo Fh

for all h: C' — S and the couniversal map v can be described in terms of the comediating-
morphism map by

v = M§,1D(IS )
The dual of Theorem 64 is the following.

» Theorem 77
Let F:C=Dandlet D € Dand S € C. Let

e, p: homp(FC, D) < home(C, S)
be a family of bijections and let
vp = g p(ls)

The following are equivalent:

1) (Comediating morphisms) The maps {0 p} ¢ are the comediating morphisms for the
couniversal pairs (S, vp: FIS — D), that is, juc. p(hpc,p) is the unique solution to the
equation
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vp © Fuc p(hre,p) = hre,p
2) (Fusion formula) The maps {p¢ p} ¢ are bijections and
neip(f) =vp o Ff

forall f:C' — S.
3) (Naturalness in C) {NC,D}C is a natural isomorphism in C, that is,

g~ °nep=hepe (Fg)~
foreach g: C" — C. O

Our plan a bit later is to combine Theorem 77 with its dual Theorem 64 and for this
purpose, we recast Theorem 77 by setting i p = Tal D

= Theorem 78
Let F:C = Dandlet D € Dand S € C. Let

T¢,p: home(C, S) « homp(FC, D)
be a family of bijections and let
vp =T7s,p(1s)

The following are equivalent:
1) (Comediating morphisms) The maps {T@}D} ¢ are the comediating morphisms for a

couniversal pair (S, vp: FS — D), that is,
vp © FTE'}D(hFC',D) = hre,p
2) (Direct fusion formula) The maps {T¢c p}. satisfy
te.0(fe.s) =vp o Ffcg

We call this formula the direct fusion formula.
3) (Naturalness in C) {7¢ p}. is a natural isomorphism in C, that is,

Tep ° 9o = (Fgc,cr) °Tep
or equivalently (and of more practical use),

o .p( fe.ap© 90.c) =Te.n(feap) © Foo.c
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Exercises

Exercises

1. Let F'< E be a field extension and let X C E be a set of algebraically independent elements
over F. Let U: Field = Set be the forgetful functor. Find a universal pair for X and U.

2. LetA: C = C x Cbe the diagonal functor, which sends an object C of C to the ordered pair
(C, C) and a morphism f: C' — C' to the morphism (f, f): (C, C) — (C', C'). Show that
we can view the product as couniversal for this functor.

3. Show that the completion M’ of a metric space M, along with the inclusion j: M — M’,
describes a universal pair.

4. Let G be a group and let R be a commutative ring with identity. The group ring RG is the
R-algebra of formal finite sums > r; g;, where r; € R and g; € G. Multiplication is done
using the product in G and linearity over R. Show that RG is a universal object.

5. Show that the polynomial ring F'[z] is a universal object.

6. Show that the first isomorphism theorem of R-modules follows directly from the universal
property of quotients.

7. Let U: Vect;, = Set be the underlying set functor. Which sets S have couniversal pairs?

8. Let D be a category and let G: D = Set be a contravariant functor. A universal element
for G is a pair (S, u), where S € D and u € GS, with the property that if (X, ) is another
such pair, then there is a unique morphism 7: X — S of D for which (G7)z = u.

a) Let P': Set = Set be the contravariant power set functor defined as follows: P’ takes a
set X to its power set PX and P’ takes a function f: A — B to the induced inverse
function f~': PB — PA. Does P’ have a universal element?

b) Consider the power set functor P: Set = Set that sends a set A to its power set and a
function f: A — B to the induced function from PA to PB. Does P have a universal
element?

9. Let G:D=CandletC € Cand U € D. Let

{rc.p}e pt home(C, GD) « home(U, D)
be a family of bijections and
u= 7'6,1 v(lo)
Show that the following are equivalent.
a) {T¢p} is natural in D.
b) {7¢,p}p satisfy the formula
o' p(geh)=Ggo Tl h(h)

foral h: U — Dand g: D — D'.
<)

7'5,11)/(9) =Ggo TE‘,ID(IU)

forallg: D — D',
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Representable Functors

= Definition
A set-valued functor F: C = Set is representable by an object A € C if there is a natural
isomorphism

{Ac}:home(A, )~ F

for some hom functor home(A, - ). O

10. Let F',G: C = Set be representable functors, with
{Ac}: home(A, )~ F
and
{pc}:home(B, ) = G
Prove that for any 7: F'— G, there is a unique h: B — A for which
ToA=poh thome(4, )>G
11. Let F: D = C andlet C' € C. Prove that the functor
home(C, F'-): D = Set
is representable if and only if there is a universal pair for (C, F).

12. Let F: C = Set be representable by A and let {*} be a one-element set.
a) Prove that if a pair of the form

(A,u: {x} — FA)

is universal for A and F, then F'is representable.
b) Conversely, prove that if F'is representable by {\c}, then

(A,u: {x} — FA)

is universal for A and F for some u.

ms@ms.lt



87 4

Cones and Limits

S. Roman, An Introduction to the Language of Category Theory, Compact Textbooks
in Mathematics, DOI 10.1007/978-3-319-41917-6_4, © The Author(s) 2017

We wish to continue our exploration of universality with some additional examples. For this,
we need to define a few more categorical concepts.

Cones and Cocones

Limits and colimits are key concepts in category theory. These concepts are based in turn on
the concepts of cones and cocones.

= Definition
Referring to Figure 43, let D(J: J = C) be a diagram in a category C and let V € C.

A

//\\ s\ |

Cone over D Cocone over D

Figure 43 Cones and cocones over D

1) A cone (V,D) from Vito D with vertex V and base D consists of the object V, together with
one morphism of C from V to each node in D. We call these morphisms the legs of the cone.
Moreover, all triangles involving the vertex V and any two legs must commute. Thus, in the
left half of Figure 43, we must have

aofy=f and Bof;=f,

A cone over D is a cone from some vertex V to D. To specify the vertex and legs of a cone
(V, D), we will write

/C:(V,{fn:V—>Jn|n€.7})

or if we do not care about the functor J,
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/C:(V,{fi:V—u‘li’iel})

for an appropriate index set 1.

2) The dual of a cone is a cocone, as shown in the right half of Figure 43. The definition of
cocone is obtained from the definition of cone by “reversing the arrows”, that is, by replacing
the phrase

together with one morphism of C from V to each node in D

with the phrase
together with one morphism of C from each node in D to V O
We phrase the following comments in the language of cones, but they apply equally well to
cocones.
Often a cone is pictured without drawing all of its legs. For instance, Figure 44 shows a cone

over a base diagram I (the shaded portion). The cone also contains a leg A from Pto C, but the
cone condition requires that

A=goa=fof

and so it need not be explicitly drawn.

Figure 44 A cone

Note that the presence or absence of identity morphisms in the base diagram ID does not
enter into the cone condition.

Cone and Cocone Categories

The cones over a diagram D(J: J = C) form the objects of a cone category conec(D). As
shown in Figure 45, a cone morphism h: L — £ from a cone

K:(V,{fn:VHJn|n€\7})
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Any Category Is a Cone Category: Objects Are One-Legged Cones

to a cone
L= (W, {g;:W— Jn|n €J})

is a morphism h: V' — W of C between the vertices of the cones with the property that any
triangle involving h and one leg from each cone must commute, that is,

gnoh:fn
foralln € J.
h
V———>W
f, 9,

Figure 45 A cone morphism h

We leave it to the reader to verify that this does define a category, where composition of
cone morphisms is ordinary composition of morphisms in C.

The notion of a cocone category coconec(D) is dual to that of a cone category and we
leave the details to the reader.

Any Category Is a Cone Category: Objects Are
One-Legged Cones

Actually, any category C can be thought of as a cone category (or cocone category), where each
object in C is the vertex of a one-legged cone.

Figure 46 Any category is a cone category

As shown in Figure 46, let * be a symbol that does not represent any object or morphism in
C and consider the category C* whose objects are Obj(C) U {*} and whose morphisms are the
morphisms in C, along with one morphism f4: A — * for each object A of C and an identity
morphism 1, for *. Composition is composition in C, along with the rule
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feogus=1ra

Let conec- ({}) denote the category of all cones inC* over the diagram {x}. Since the cones over
{x} are precisely the sets

Ka=(A [y A— %)
for A € C, we can identify each object A in C with the one-legged cone K 4. Also, each morphism

¢: A — BinC can be identified with the corresponding cone morphism in conec- ({*}). In this
way, we can think of C as the cone category cone-({*}).

Limits and Colimits

A terminal object in a cone category conec (D), that is, a terminal cone is also called a limit of D.
= Definition

Let D(J: J = C) be a diagram in a category C.
1) Alimit of D is a terminal cone over D, that is, a cone

K=V {f:V—Jn|ned})
with the property that given any cone with vertex W,
L= W/ {g:W—Jn|neJ})
there is a unique cone morphism §: L — IC, that is, a unique morphism 0: W — V for which
fnob0=g,

foralln € J. A limit (or its vertex) is often denoted by lim D.

2) Dually, a colimit of D is an initial cocone over D, that is, a cocone
K= (V,{f“:Jn—>V|n6j})
with the property that given any cocone
L=W/{g:neT -W|neJ})

there is a unique cocone morphism 6: L — K, that is, a unique morphism 6: V. — W for
which

eofn:gn

foralln € J. A colimit (or its vertex) is often denoted by lim . O
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Terminal Cones and Couniversality

= Theorem 79
Limits are determined up to isomorphism, that is, if a diagram D has a limit IC, then the limits of
D are precisely the cones that are isomorphic to K. The dual statement holds for cocones. O

Terminal Cones and Couniversality

Let us fix an index category J, a category C and a diagram
D(J: J =C)

Our goal is to show that terminal cones (limits) over D are essentially just special types of
couniversal pairs in an appropriate comma category.

The first “issue” with a cone is that it mixes apples and oranges, that is, objects in C (the
vertex of the cone) with objects in the diagram category dias(C) (the base of the cone).

To fix this, we define the constant diagram V(.Jy: J = C) with index set J and vertex
V' € C to be the constant functor defined by

J\/(n) =V and J\/(f) = IV

As pictured in Figure 47, this is the diagram for which all nodes in the underlying graph are
labeled Vand all arcs are labeled 1y:

Vv 1, V
m® > e, .

Figure 47

Since the categories [ and C are fixed, it is clear that there is a bijection between objects
V € C and constant diagrams V(Jy: J = C) in the diagram category dia(C) and so these
concepts are equivalent.

Now, Figure 48 shows a cone

K=V,{:V—=Jn|ned})

over the base diagram D(.J: 7 = C) alongside the equivalent picture obtained by replacing the
vertex V of the cone with the constant diagram V.

v v o1, V)
i m® —> o,
o \Y
Ay A,
- Ao
Jm v Jo N Jn Jm 4 Ja VJn\
m® ——> ®n m® —> ®
ol D o ]D)

Figure 48
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Note that the cone’s leg set {\, ’ n € J} corresponds to the natural transformation
A={\|neTd}Jv>J (80)
between the J-diagrams (functors) on the right in Figure 48. Thus, we may think of the cone
K=V,{\:V —Jn})

IC with vertex V over the base diagram D(J: J: = C) as a pair
(V, Ok Jy = J) or (V, DV ]D) (81)

consisting of the vertex V'and the natural transformation {)\,,} that makes up the leg set for the
cone. But this looks a lot like a member of a comma category with anchor object .J, where the
domains of the arrows are restricted to constant diagrams (functors).

So, as shown in Figure 49, we define the constant-diagram functor G 7: C = dias(C) that
sends an object V'to the constant diagram V(.Jy: J = C) and a morphism f: V— W to the

“constant” natural transformation { f}: V — W all of whose components are f. Then the cone
IC in (81) can be written in the form

(V,{An}: G V- J)

which belongs to the comma category (G — J) with anchor object J.

dia (@) é

Figure 49

Moreover, a cone morphism f: X — L between cones corresponds to a morphism between
the corresponding comma pairs. Thus, we can state that a terminal cone is equivalent to a
terminal object in the comma category (G 7 — J), that is, to a couniversal pair for (G 7, J).

Categorical Constructions

Categorical constructions provide more evidence that universality is, well, universal. As
mentioned earlier, a categorical construction is nothing more or less than an example of a
universal or couniversal pair in the context of a category of diagrams. However, we will use the
traditional terminology of limits and terminal cones (and colimits and initial cocones), rather
than universal pairs (and couniversal pairs).
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Equalizers and Coequalizers

We will concentrate on three important categorical constructions and their duals:
equalizers and coequalizers, products and coproducts, and pullbacks and pushouts.

Equalizers and Coequalizers

We begin with a definition.

= Definition

Let C be a category and let f, g: A — B be parallel morphisms.
1) A morphism h: C — A right-equalizes f and g if

foh=goh

2) Dually, a morphism k: B — C'left-equalizes f and g if

kof:kog

Now we can define the equalizer of f and g.

N
310,
Y f
E € AQ—)B
D

Figure 50

= Definition
Let C be a category. As shown in Figure 50, an equalizer for a diagram consisting of two parallel
morphisms

D={fA— B,g A— B}

is a limit (terminal cone)

E=(E,ee E— A)

over D, that is, a pair & for which e right equalizes f and g and for any h: X — A that right-
equalizes f and g, there is a unique mediating morphism 6: X — E for which

eof=nh O
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As alluded to earlier, we often omit legs of a cone that are uniquely determined by other
legs, which is why we have denoted the cone £ by

E=(FE,e: E— A)
rather than

E=(E,e:E— A ,foe: E— B)

(By the definition of cone, foe=goe.)
It is not hard to see that equalizer morphisms are monic.

= Theorem 82
If€ = (E,e: E — A) is an equalizer of the pair f, g: A — B, then e is monic.

= Proof

A common technique for showing that two morphisms are equal is to show that they are both
mediating morphisms for the same limit or colimit. Recalling that monic means left-
cancellable, we want to show that if o, §: X — E then

eoa=cofl=>a=p

To this end, we draw the diagram in Figure 51.

X
ii eoa=eof

w

E—2>A ;:;B
Figure 51
Then the cone condition f o e = g o e implies that
foeoca=goeoa
and so
X=WX,eoa: X — A)

is a cone over {f, g: A — B}. But each of o and (3 is the mediating morphism for & and so
« = (. Thus, e is left-cancellable. O

Note that there is no requirement in the definition of equalizer that f and g be distinct.
We leave it to the reader to show that a pair (E, e) is an equalizer of (f, f) if and only if
e: £ — A is an isomorphism.
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Equalizers and Coequalizers

= Example 83

For the category Set and for many common “set-based” categories, such as Grp, Rng and Mod,
the equalizer of f, g: A — B is easy to describe. In fact, the name “equalizer” gives away the
description: It is the largest object (group, ring, module) contained in A upon which fand g are
equal:

E:{a€A|f(a):g(a)}

along with the inclusion map e: E — A. This can be seen by noting that f and g are right-
equalized by h: X — A, that is,

foh=goh

if and only if fand g agree on the image h(X), that is, if and only if 2(X) C E. Hence, the map
h': X — E defined simply by restricting the range of h to E is a mediating morphism, since

eoh’'=h

As to uniqueness, if §: X — F also satisfiese 0 § = h,thene o § =e o I/ andso § = h'. O

Coequalizers

The dual to the equalizer is the coequalizer.

, . k
‘A 3B >C
v
X

Figure 52

= Definition
Let C be a category. Referring to Figure 52, the coequalizer of the diagram

D={fA— B,g: A— B}

is an initial cocone

I=(C,k:B—C)

under D, that is, a pair T for which k left-equalizes f and g and for every k: B — C that left-
equalizes f and g, there is a unique mediating morphism 6: C' — X for which

fok=nh O
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In general, even though coequalizers are obtained from equalizers by “reversing all arrows,”
specific coequalizers seem rather more complex, or at least rather less intuitive than equalizers.

In certain contexts, the coequalizer describes one of the most important constructions of
modern algebra, namely, quotient structures. We remind the reader of the bijective correspon-
dence between partitions of a set and equivalence relations on the set. We will use both
concepts interchangeably in these examples.

= Example 84
Consider the coequalizer in Set. The condition that h: B — C left-equalizes f and g is

ho f(a) =hogla)

and this is equivalent to the statement that h is constant on all sets of the form {f(a), g(a)} for

a € A.
f f(a)e h
A g g *g(a) ¢

It is well known that any set function h: B — C induces a partition of its domain B whose
blocks are the nonempty inverse images h~'(c), for ¢ € C. Moreover, as shown in Figure 53,
h left-equalizes f and g if and only if for all a € A, the elements f(a) and g(a) belong to the
same block of this h-induced partition of B.

As we will see, the most “universal” such partition is the finest partition P of B for which
each set { f(a), g(a)} lies in a single block. Note, however, that the fact that f(a) and g(a) lieina
single block K of P may force other elements of B to also lie in that block. For example, if
g(a) = f(a’) for some a’ # a, then of course f(a’) € K and so g(a’) must also lie in K.

Perhaps the best way to get a handle on the partition P is to consider the corresponding
equivalence relation = defined by P. Thus, we begin by defining a binary relation on B by

Figure 53

bt if b=10b or {b¥} ={f(a),g(a)} for some a € A

This relation is both reflexive and symmetric, but it need not be transitive, so we must pass to
the transitive closure =. Thus, b; = b,, if there is a finite sequence

bl’bZ’ ~-~’bn

of elements of B for which b; = b;,, fori =1,...,n — 1.

Now, the function h left-equalizes f and g if and only if & is constant on the equivalence
classes of this equivalence relation. Moreover, the most “universal” choice for A is any function
that assigns different values to these equivalence classes. Perhaps the simplest way to define
such a function, which we denote by 7 is to send each element of a particular equivalence
class F to the equivalence class E itself, that is, w(b) = [b], where [b] is the equivalence class
containing b.
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Equalizers and Coequalizers

The function 7 is called the canonical projection associated with the equivalence relation
or the partition and P is denoted by B/ =. Hence, m: B — B/ = is defined by

m(b) = [b]

To see that 7 is indeed a coequalizer of f and g, if h: B — X left-equalizes f and g, then
h is constant on the aforementioned equivalence classes and so the function 6: (B/ =) — X
defined by

is well-defined. Moreover, h = 6 o . As to uniqueness, if h = 7 o 7 for some 7: B/ = — X,
then

for all b € B and so 7 = 6. Hence,
(B/=,m B— B/ =)
is a coequalizer of fand g. m|

= Example 85

We can perform a similar analysis to determine the coequalizer in other categories. For example,
consider the coequalizer in Grp. As with Set, a group homomorphism h: B — C
left-equalizes fand g if, for all a € A, the values f(a) and g(a) belong to the same equivalence
class of the equivalence relation = generated by i. However, since h is a group homomorphism,
this equivalence relation is a congruence relation, that is,

r=y and u=v = z'=y! and 2u =y

In the language of partitions, the blocks of the associated partition are called congruence classes.
Thus, we seek the congruence relation = on B that has the finest partition among all
congruence relations = for which f(a) = g(a), for all a € A.

The congruence relations on B correspond bijectively to the normal subgroups of B. (This
is a critical fact that seems often to be played down in elementary algebra books.) This
correspondence sends a congruence relation = to the normal subgroup [1]- and a normal
subgroup IV < B to the congruence relation

a=yb if blae N
Moreover, = y has a finer partition than = ,, if and only if N C M. Thus, we may deal with
normal subgroups instead of congruence relations.

To determine the normal subgroup N = [l1]= associated with the desired
congruence relation =, note that f(a) = g(a) if and only if g(a)™" f(a) = 1, that is, if and
only if g(a) "' f(a) € N. Hence, if N is the normal closure (S )., of the set

s ={g(a)'f(a) | a € 4}
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that is, if IV is the smallest normal subgroup of G containing S, then our candidate for the
coequalizer of fand g is the projection map

B
T B —
<S>n0r
First, it is clear that
mof=mwog

Also, if h: B — X has the property that h o f = g o f, then the mediating morphism condition
is

Qomr=h

that is,

But this uniquely defines a group homomorphism 6: B/(S),,, — X. Thus,

(B/(S)nor ™ B = B/(S) por)

is a coequalizer of f and g.
Thus, for groups (and similarly for other algebraic structures) the dual of restricting to the
substructure

E = {a cA | fla) :g(a)} = {a cA | g(a)flf(a) = 1}
is factoring out by the “normal” substructure generated by the set

s ={g(a) ' f(a) | a € 4}

Products and Coproducts

The direct product is a familiar construction in many categories. Here is the formal definition
for general categories.
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Products and Coproducts

Figure 54

= Definition

LetCbe a category. Referring to Figure 54, letID be the diagram consisting of two objects A and B,
with no morphisms. Any limit of D is called a product of A and B. Thus, a product of A and
B is a triple

(AXx B,p;: Ax B— A,p;y AXx B— B)

with the property that for any object X and morphisms f: X — A and G: X — B, there exists a
unique mediating morphism 6: X — A x B for which the diagram in Figure 54 commutes, that
is, for which

prot0=fand pyob=g

The maps p, and p, are called the projection maps. i

Although it is quite misleading, it is common to denote a product simply as A x B, without
explicit mention of the projection maps. Since the product is a limit, we know immediately that
all products of A and B are isomorphic.

Note that two morphisms «, 3: X — A x B are equal if and only if

prea=pofand pyoa=p,°f

This is a common application of the uniqueness of the mediating morphism.

Once the product of two objects is defined, it is not hard to generalize to the product of any
nonempty family F = {4, | i € I} of objects in C. Let D be the diagram consisting of the
objects in F, with no morphisms. A product of F is a limit in the category of cones over D. In
other words, the product is a pair

(HAh%anfe&D
iel iel

[ A =17

i€l

where

is an object and the morphisms p; are called projections, with the following property: If
X is any object of C with morphisms g;: X — A, then there is a unique mediating morphism
0: X — [|F for which p; o § = g,. If any pair of objects has a product, then C has binary
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products. If any finite family of objects has a product, then C has finite products. If any family
of objects has a product, then C has products.

The dual notion to product is coproduct, denoted by +, whose defining digraphs are the
duals of the diagrams in Figure 54. We leave it to the reader to formulate the precise definition
of coproduct.

One note on notation: In older literature, the product is denoted by M and the coproduct by LI.

A careful look at the definition of product shows that the product of the empty family is an
object T'with the property that there is exactly one morphism entering 7" from any object, that
is, T'is terminal. In short, the product of the empty family is a terminal object, if one exists.
Otherwise, the product does not exist.

Similarly, the coproduct of the empty family is an initial object in C, if it exists. As a result,
the statement that a category has finite products implies that it also has a terminal object and
similarly for coproducts. If C has both finite products and finite coproducts, then C has a zero
object.

Since products are limits, they are defined up to isomorphism. This is also true of the
projection maps. For if

(Ax B,p;: Ax B— A,p;; AX B— B)

is a product of A and B and if \: A x B~ A x B is an isomorphism, then

(AxB,pyoXAxB— A,p,o\ Ax B— B)

is also a product of A and B.

We leave it as an exercise to show that, in general, the projection morphisms of a product
need not be epic (right-cancellable). However, it is often the case that projections are not only
epic, but right-invertible.

= Theorem 86

Let C be a category. Assume that the product (A x B, pi, p,) exists. If there is at least one
morphism f: A — B, then p; is right-invertible. If there is at least one morphism f: B — A, then
pa is right-invertible.

= Proof

The diagrams in Figure 55 tell the whole story. They show the product of A and B along with
two cones, one with vertex A and the other with vertex B. Here f,5 is any morphism from
Ato B and fp, is any morphism from B to A.

A B
1, /36 foo f, /3w 15
v |
AxB AxB
A m [Sh (&
A B A B

Figure 55
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Since p; o § = 14, it follows that p, is right-invertible. Similarly, p, o u = 15 implies that
p is right-invertible. O

= Example 87

1) In Set, the product is the cartesian product, with the usual projections.

2) In Grp, Mod and Rng, the product is the usual direct product of groups, modules or rings,
defined coordinatewise.

3) In Poset(P), the product is the least upper bound.

4) In Poset, the category of all posets, with monotone maps, there are two potential candidates
for the product

(P X Q,Pppz)

of posets Pand . The product order on the cartesian product P x @ is defined by
(P@) < (P@2) if pr<p, and ¢ <gq

The set P x @ with this order is called the product of Pand Q. Also, the lexicographic
order on the cartesian product P x () is defined by

(1, @) < (p2,2) if py<p, or (pp=p, and ¢ <¢q)

This is also a partial order on P x (). We leave it as an exercise to determine which of these
candidates gives the categorical product. (Or is it both?)
5) In the exercises, we ask the reader to show that the category Field does not have products.OI

= Example 88
In Set, the coproduct is the disjoint union A U B of the sets (with the obvious inclusions).
Formally, the disjoint union is

AUB={(a,0) |ac A} U{(b,1) |be B}

In Grp, the coproduct is the free product of groups, in fact, this is often taken as the definition of
the free product. In AbGrp, Mody, and Vect, the coproduct is the usual direct sum of abelian
groups, modules and vector spaces, respectively. Thus, finite coproducts are the same as finite
products, but infinite coproducts differ from their product counterparts. In CRng, the coprod-
uct of commutative rings is their tensor product. In Poset(P), the coproduct is the greatest
lower bound. O

Pullbacks and Pushouts

We next look at pullbacks and pushouts.
= Definition

Let C be a category. As shown in Figure 56, a pullback of the pair (f: A — C,g: B— C) isa
terminal cone over the diagram D.
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Figure 56

Thus, a pullback is a triple

(P,a: P— A,3: P— B)

(along with the determined third leg from Pto C') for which
goa=/fop
and with the property that for any object X and morphisms h: X — A and k: X — B for which
fok=goh
there exists a unique mediating morphism 0: X — P for which
aof and Pol=k

Referring to Figure 56, o is called the pullback of f along g and (3 is called the pullback of ¢
along f. O

In any category C, pullbacks, equalizers and products are related as follows:

pullbacks and terminal objects = finite products

binary products and equalizers = pullbacks
We leave proof of the first statement as an exercise and prove the second.
= Theorem 89

If a category C has binary products and equalizers, then it has pullbacks. In fact, a pullback of
D={f:A— C,g: B— C} can be obtained as follows: As shown in Figure 57, let

P =(AXxB,p,py)

be a product of A and B and let

E=(E,e: E— AXx B)
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be an equalizer of the lower and upper diagonal maps

fopiAxB—C and gopyAxB—C

Then the triple

U= (E,pyce:E— A p,oe: E— B)

is a pullback of D.

Figure 57 A pullback

= Proof
As shown in Figure 58, if X = (X, h, k) is a cone over D, that is, if

f oh = go k (90)
then we must show that there is a unique mediating morphism c: X — E for which

(ppoe)oa=h and (p,oe)oa=k (o1

Figure 58
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Now, by definition of the product, there exists a unique §: X — P for which

pref=h and p,of=k (92)
Substituting these expressions for h and k in (90) gives

fopiob=gop,ob
Thus, 6 also equalizes the upper and lower paths and so there is a unique a: X — FE for which
eoa=1~0
Substituting into (92) gives
(ppoe)oa=h and (p,ce)oa=k

which is (91) as desired.
As to uniqueness, if y: X — E is another such mediating morphism, that is, if

(pree)op=h and (pyee)op=k
then the uniqueness of 6 satisfying (92) implies that
eop=0=coaq
But the equalizer arrow e is monic and so p = a. O

= Example 93
The previous theorem gives us a strong sense of what the pullback looks like in many familiar
categories. For instance, in Set, we equalize the upper and lower diagonals

fopiAxXxB—C and gop,, AxB—C

to get
E={(a,b) € Ax B|g(a) = f(b)}

with legs equal to the restriction of the projection maps p; and p, to the set E. This shows that
pullbacks are a form of “super diagonalization” based on the functions f and g. O

The pullback of a monic is monic. However, the pullback of an epic need not be epic.

= Theorem 94

Let C be a category.

1) If a monic in C has a pullback, then the pullback is also monic.
2) The pullback of an epic need not be epic.

3) The pullback of a right-invertible morphism is right-invertible.
4) The pullback of an isomorphism is an isomorphism.
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= Proof
For part 1), Figure 59 shows a pullback P = (P, a, §) for {f, g}, where g is monic.

Boh=Bok

aoh=0o0k

P——>
o g
AfHC
Figure 59
To show that « is also monic, let

aoh=aock
To show that h = k, we show that h and k are mediating arrows for P. First note that

Boh=pfok
since

goBoh=foaoh=foaok=gofok

and since g is left-cancellable. Thus, all paths from X to either A, B or C' commute. It follows
that

X=(X,aoch=aok,foh=[0ok)

isa cone over {f: A — C, g: B — C} and that both % and k are mediating arrows from X to P,
whence h = k. We leave proof of the remaining statements as an exercise. O

One can easily generalize the pullback to families 7 = {f;: A; — A} of morphisms with
the same codomain A: A pullback of F is a terminal cone over the cocone with vertex A and
legs fi: A; — A.

The dual construction to the pullback is the pushout. We leave it to the reader to formulate
the definition and to show that the pushout of two set functions f: C' — A and g: C' — B is the
disjoint union of A and B, but with elements that have the same preimage under f and
g identified.

ms@ms.lt



106 Chapter 4 Cones and Limits

Exponentials

Let us begin with some motivation. Let A, B and C be sets. The exponential notation C”
is often used to denote the family of set functions from B to C. Now consider a set function
f: A x B — C of two variables. We can turn f into a function 73: A — C' B of one variable by
letting 7 (a) be the function defined by

77(a)(b) = f(a,b) (95)
It is clear that f and 7 determine each other uniquely, that is, if o: A — C” satisfies

o(a)(b) = f(a,b)
then o = 7. This is a technique that computer scientists refer to as currying. (Specifically,
currying is the technique of transforming a function of several arguments into a function of the
first argument that returns a function of the remaining arguments. The technique was named
after the logician Haskell Curry.)

To make this notion categorical, we need to remove mention of elements. To this end,
define the evaluation function € to be the map that takes a function a € C” and an element
b in the domain B and gives a(b) € C, that is,

e CPxB—C, ea,b)=alb)
Then (95) can be written in the form
e(77(a),b) = f(a,b)
or
eo (1 x 15)(a,b) = f(a,b)
or finally,

60<Tf><13):f

This looks a lot like a couniversal mapping property.

C<———C°xB c
A A
1T X 1, < :El!rf
f | G, |
AxB A

Figure 60
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To this end, define the “product by B” functor Gp: C = C by
GB(A):AXB, GB(f):fXIB

for A € Cand f € Mor(C). Then with reference to Figure 60, for any f: A x B — C, there is
a unique 75: A — C® for which

f=¢€oGpTy (96)
Let us generalize this construction.
= Definition
Let C be a category with binary products and let B,C &€ C. As shown in Figure 60, an
exponential of B with C consists of a pair

(CPe.CP xB— Q)

where C” is an object of C and where the following property holds: For any object X € C and
morphism

[fXxB—=C
there is a unique morphism 7¢: X — C” for which
eo(mpxlp)=f
The map ¢ is called evaluation and the morphism 7y is called the (exponential) transpose of f.0
= Example 97

Consider the category Poset of all posets, with monotone maps. Let P, () € Poset. Using the
example of Set, we guess that the exponential

(@".eQ"xP—Q)
is given as follows. Let Q” be the set of all monotone maps from Pto Q and let ¢ be defined by
€(9:p) = 9(p)

To see if this is an exponential, suppose that f: X x P — (@ is a monotone map. Define
T X — QF as the curried version of f, that is,

To see that 7; is monotone, if 2 < y, then for all p € P, we have (z, p) < (y, p) in X x Pand so

7 (x)(p) = f(z,p) < f(y.p) = 75(v)(p)
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which implies that 7/ (z) < 74(y). Then we have

(77 x 1p) (,p) = (77(x).p)
and so

e o (17 x 1p)(w,p) = €(17(2),p) = 74(2)(p) = f(z,D)

as desired. As to uniqueness, if i: X — Q" satisfies

€o (ux1p)(z,p) = f(z,p)
then

(@) (p) = f(x,p) = 7¢(x)(p)
forall p € Pand all x € X and so 1 = 7. O
= Example 98

Consider the category Grp and let G’ be a group. Using the example of Set, we guess that the
exponential

(G% e GYx G — Q)

is given as follows. Let G be the set of all group homomorphisms from G to itself and let € be
defined by

e(f,a) = f(a)

To see if this is an exponential, suppose that f: X x G — G is a group homomorphism.
Define 75 X — G by

To see if 77 is a group homomorphism, let , y € X. Then we want to show that
7y (xy) = 74(x) © 74 (y)
This can be written
fxy, ) = f(x,-) ° f(y,")
or applying it to a € G,
flzy,a) = f(z, f(y,a))
which looks a bit untrue in general, thus putting the existence of group exponentials in serious

doubt.
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In fact, if we take X = {1}, then the existence of exponentials would imply that there is
a bijection between group homomorphisms f: {1} x G — G and mediating morphisms
T {1} — G®. But there are in general many of the former and only one of the latter! Thus, the
category Grp does not have exponentials. O

Existence of Limits

Let us now consider the question of the existence of arbitrary limits in a category. In general, it
is too much to expect a category to have arbitrary limits. For example, in Set, the diagram
consisting of all sets cannot have a product, since this would be the Cartesian product of all sets,
which is not a set. Thus, we restrict attention to small diagrams.

= Definition

1) A diagram D in a category C is called a small diagram if the class of objects of D is a set
and a finite diagram if the class of objects of D is a finite set.

2) A category C. is complete if every small diagram has a limit and finitely complete if every
finite diagram has a limit. Dually, C is cocomplete if every small diagram has a colimit and
finitely cocomplete if every finite diagram has a colimit. O

We assume in the following discussion that all diagrams are small diagrams and use
the term small product to denote the product of a small diagram. Our main theorem says that
if Dis a small diagram in a category C that has equalizers and if certain small products related to
D exist, then D has a limit in C.

Note that since the presence or absence of loops labeled with an identity morphism in a
diagram ID does not change the cone category over D, this has no effect on the existence of a
limit. Therefore, in order to ensure that every node in D has in-degree at least 1, we may assume
that every node has a loop labeled with the appropriate identity morphism.

Now let D be a small diagram in C, as shown on the left in Figure 61. For clarity, we have
omitted the loops at each node labeled with identity morphisms. Let

{Dy| ke K}

be the multiset of objects that label the nodes of D, where the index set K indexes the nodes of
. (A multiset is a “set” in which each element may appear more than once.) Thus, D, and D,
need not be distinct objects for k # j.

As shown in Figure 61, we make two new diagrams from . The diagram D™ consists of just
the nodes of I. To make the diagram D, if a node of D has in-degree 1m;, in D, then D™ has m;,
nodes, each labeled with D;,.
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Figure 61
Now we can state the general result.

= Theorem 99
Let C be a category with equalizers. Let D be a diagram in C and let

{Dy| ke K}

be the multiset of objects labeling the nodes of D. Assume the following:
1) The product

P= (P {p|keK})

of the diagram D~ defined above exists.
2) The product

Q= (Q{mi:Q—Dy|keK,1<i<m})
of the diagram D" defined above exists.
Then D" has a limit in C. In particular, if C has equalizers and small products, then C is complete

and if C has equalizers and finite products, then C is finitely complete.

= Proof
The proof is illustrated in Figure 62.
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Figure 62

The figure shows a node of D with in-degree m;, = 2 and object label D;, which manifests
itself in the diagram D" as a pair of nodes labeled Dj. Two morphisms

Fawn): Dagery — Dr - and - fage0): Dagrp) — Dy

in D that enter Dy, are also shown. The figure shows the vertices Pand () of the products of D™
and D,

P=(P=TID: pg:P — Dy)
Q= (Q=IIDtm::Q — Dy)

Notice that the projections 7 ; for the product Q are doubly indexed because each object in D
may be duplicated in D, For example, since the object D;, appears twice in D, we need two
projections from @) to D, labeled 7 ; and 7y, 5.

The projections py, of the product P of D™ can be used to define two cones over DT, both
with vertex P. The first cone is obtained by simply duplicating each projection py a total of m,
times, giving the cone

Ky = (P, {py: P — Dy | ke K,1<i<m})
where pi; = py-
The second cone over D" uses the morphisms of ID. Specifically, each leg of this cone is a

path of length 2 that consists of a projection to the domain of each morphism fy ) of D,
followed by the morphism fjy ;) itself. Thus,

K, = (P, {fd(k,z) © Pd(k): P — Dy | ke K,1<i< mk})
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Now, since Q is a product of D", there are unique mediating morphisms 6,, 6,: P — Q,
corresponding to the two cones KC;. and K5, for which

i © 6 = py
and

ki © 02 = Fages) © Pagi)

If (E, e: E — P) is the equalizer of #; and 6,, then applying e to the right gives the two
equations

mrioBioe=p,oe
and

Thi © 02 0 € = faga) © Pagii) © €
and since 6; o e = 0, o e, the left sides are equal and therefore so are the right sides, whence
Pr © €= Fatii) © Paki) © €
This says that the pair
&= (E,{pkoe:E—>Dk|k€K})

is a cone over D, since the morphisms {f;,)} constitute a complete set of morphisms in .
To see that £ is terminal, consider an arbitrary cone over D,

X = (X, {B: X — Di})
where

Faki) © Baway = Br
Since X is also a cone over D™, there is a unique mediating morphism p: X — P for which
P ° 1= By
The map p right-equalizes 6, and 6,, since for all projections 7, ;, we have
i © (01 0 p) = pj o p=py
and
i © (02 0 1) = Fatia) © Pairi) © 1= Fati) © Bagesy = B
and so

Oropu==60pu
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Hence, there is a unique mediating morphism A: X — E for which
eoN=p
But then

(pr.oe)oX=p,ou=70

which shows that A\: X — F is a cone morphism from X" to £. As to uniqueness, if

(proe)oa=p,

then

(proe)oa=(p,oe)o
for all p;, and so e © @ = p = e o A, which implies that o = A. |
Completeness

We have mentioned that if C has pullbacks and a terminal object, then C has finite products.
Therefore, since an equalizer is a special type of pullback, we have the following result.

= Theorem 100

Let C be a category. The following are equivalent:

1) Cis complete.

2) C has equalizers and small products.

The following are also equivalent:

3) C is finitely complete.

4) C has equalizers and finite products.

5) C has pullbacks and a terminal object. O

Exercises

1. Let C be a category. Show that if € = (K, {f, } n € J}) isa terminal cone in C and 6 :
L ~ K is an isomorphism in C, then

L=(LAf,00|ne T}

is also a terminal cone.

2. Prove that there is at most one cone morphism o: K — L between cones when £ has only
monic legs.

3. Show that the pair (£, e) is an equalizer of (f, f) if and only if e: £ — A is an
isomorphism.

4. Let (E, e) be an equalizer. Prove that if e is epic, then it is an isomorphism.

5. Find the limits of a diagram consisting of a single morphism f: A — B.
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10.
11.

12.

13.

14.

15.

16.

17.

Chapter 4- Cones and Limits

. Ifa category C has finite products, prove that any f: A — B can be factored into a product

f=p o 0, where 0 is right-invertible. Also, if there is a map from B to A inC, then p is left-
invertible.

Prove that the category Field does not have products.

Let C be a category. Is it true that if the product of a family F = {4, | i € I} exists inC,
then the product of any nonempty subfamily of F also exists? Hint: Consider the category
of all sets of size 2 or less.

a) Find the product in Poset.

b) Find the coproduct in Poset.

Find the coproduct of Z, and Zs.

Let

P=(AxB,p; AxB— A,p;; Ax B— B)

be the product of A and B. Show that if o, 3: X — A x B are parallel morphisms
satisfying
poa=p of

and
proa=pyofl

then a = (.

Show that if a category C has the property that every pair of objects has a product, then
any finite family of objects has a product. In fact, the product (4 x B) x C'is equal to
Ax BxC.

Show that the projection morphisms of a product need not be epic.

Let A, B and C be objects in a category C. Assuming that all coproducts exist, show that if
A and B are isomorphic, then A + C and B + C are also isomorphic.

a) Find the coequalizer in Mod.

b) Find the coequalizer in Rng.

Prove that in Vect, a morphism is monic if and only if it is an equalizer. State and prove
the dual.

Let G: D = Set. Suppose that there is a universal pair

(Sgsuz:{x} — GS,)
for every one-element set {x}. Let X be a nonempty set. Suppose that the coproduct
(C:=+s e xS0, {k: o — C})
exists. Prove that
(C,ue X — GO)
is universal for (C, G), where

u(r) = (Gky © ug)(1)
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18. LetC be a category. Show that if a morphism in C has one of the following properties, then
so does its pullback (if it exists).
a) right-invertible
b) an equalizer.
19. Find a category in which the pullback of a left-invertible morphism need not be left-
invertible. Hint: Try a subcategory of Set.
20. Find a category in which the pullback of an epic need not be epic. Hint: Try a subcategory
of Set.
21. LetC be a category with pullbacks. Show that if C has a terminal object 7, then C has finite
products.
22. InSet,let A C Candlet j: A — C be the inclusion map. Show that the pullback object P of
(j: A— C, f: B — C) is isomorphic to the inverse image f'(A).
23. Consider the diagram in Figure 69. Show that if the two small squares are pullbacks, then
the entire rectangle is a pullback.
f 9
A —>B—>C,
hy h, h
Ao f, B; 92 C,
Figure 63

24. Describe the limit of any diagram in Set, starting with the product of the objects in the

diagram. In particular, describe the limit in Set of the diagram consisting of the following
three objects and two arrows:

I:{a,b} — {1,2}; 1(x) =1
2:{c,d} — {1,2};2(x) =2

25. As shown in Figure 64,

Figure 64
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a functor G: C = D preserves limits if the following holds: For any limit
K= (V7{f“ ’ n € j})
of a functor F: J = C, the cone
GK = (GV,{Gf, | ne T})
is a limit for the functor G o F. For A € C, prove that the hom functor

homeg(A4,-): C = Set

preserves limits. State and explain the dual.
26. A functor G: C = D reflects limits if whenever

K=WV{/f.[ned}
is a cone over F: J = C for which the image

GK = (GV,{Gf, | ne T})

is a limit of G o F, then K is a limit of F. Prove that if C is small and complete and if
G preserves limits and reflects isomorphisms (isomorphism are limits over a single-object
diagram), then G reflects limits.

27. Prove that any fully faithful functor G: C = D reflects limits.

Inverse and Direct Systems

A partially ordered set [V is directed if for any ¢, j € NN, there is a k € N for which k£ > 4 and
k > j. We make the following definitions, which are standard for specific cases (such as the
category of groups or modules) but perhaps not standard in the general setting of a category.

= Definition

Let C be a category. An inverse system is a diagram G in C with the following properties:
1) The objects of G are indexed by a directed partially ordered set N.

2) There is exactly one morphism

fi,j: Aj — Al
between each pair (A;, A;) of objects of G with i < j (note the direction of the morphisms).
3) fi; = 14, is the identity foralli € N
4) frio fij= fxjforallk <i<jinN O

28. Show that the limit of an inverse system

G=({Gi}, f.;: G;— Gi})
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29.

of groups is

lim (G) = {a € [I Gi| fi;(ey) =ai, for all igj}

i€/

where we have written « (k) as ay. Hence, in this case, the elements of lim (G) are

elements of the product whose coordinates are related as specified by the morphisms of G.
Show that when the partial order on N is equality, the limit of an inverse system is just the
direct product.

We can dualize the notions of inverse system and limit.

Definition

Let C be a category. A direct system is a diagram G in C with the following properties:

1)
2)

3)
4)

30.

The objects of G are indexed by a directed partially ordered set N.
There is exactly one morphism

fig Ai = 4
between each pair (A;, A;) of objects of G with i < j.
fi.i = 14, is the identity for all k € N
fiko fij= fuxforalli<j<kinN O

Prove that the colimit of a direct system M of modules is a quotient module of the
coproduct (direct sum)

+ M=) M,

i€l
of the family of modules, defined as follows. For a; € M;, write
[ai]; = ri(as)
where K M — Z M is the canonical injection map. Also, if j > i, write
[ai],,-,,- = la;]; — [fi,j(ai)]j
Let N be the submodule generated by the [a]; ; and define the colimit as the quotient

dirlim(M) = imM = +M; /N
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S. Roman, An Introduction to the Language of Category Theory, Compact Textbooks
in Mathematics, DOI 10.1007/978-3-319-41917-6_5, © The Author(s) 2017

It has been said that the notion of an adjoint is the pinnacle notion in category theory; that it is
the culmination and perhaps even the raison d'étre of all of the theory that comes before it. It
has also been said that adjoints are both unifying and ubiquitious in mathematics and have a
strong and powerful presence in other disciplines as well, such as computer science.

There are many approaches to the study of adjoints and it seems as though every
source uses a somewhat different tack. We will approach the subject through the concept of
(bi)naturalness.

To improve readibility, we will often write Gp—¢ in place of G: D = C.

Binaturalness

Suppose that F:C = D and G: D = C are antiparallel functors and let

{TC,D} = {TC,D}C,D5 homc(C, GD) <~ homc(FC, D)
be a doubly indexed family of maps. Thus, C' ranges over the objects of C and D ranges over
the objects of D. Then we can combine Theorem 64 and Theorem 78 as follows. Note that

U = FC in Theorem 64 and S = GD in Theorem 78.

= Theorem 101
Let F:C = D and G: D = C be antiparallel functors and let

{TC,D} = {TC,D}C,D: homC(C’, GD) Ad homC(FC’, D)
be a doubly-indexed family of bijections. Let
uc = TE?,IFC(IFC) and vp = TGD,D(lGD)
1) The following are equivalent:
a) (Mediating morphisms) The maps {Tc p}p are the mediating morphism maps for the
universal pairs (FC, uc : C — GFQ), that is, o, p(fc,ap) is the unique solution to the

equation

Gre.n(feap) ©ue = fo.ap

ms@ms.lt



120 Chapter 5- Adjoints

b) (Inverse Fusion formula) The maps {7¢ p}p satisfy
76 p(hv.p) = Ghy,p ° uc
¢) (Naturalness in D) {7¢ p}p is a natural isomorphism in D, that is,
Te,p © (Ghp,p)” = hp y oo
or equivalently,
7¢,0 (Ghp,p © fe.ap) = hp,p o Te.0( fe.ap)

2) The following are equivalent:
a) (Comediating morphisms) The maps {TE}D}C are the comediating morphisms for the
couniversal pairs (GD, vp: FGD — D), that is, T@}D(hpc,p) is the unique solution to
the equation

vp © FTE*]D(hFC,D) = hrc,p
b) (Direct Fusion formula) The maps {7z'},} satisfy
7e,p(f) =vpo Ff
¢) (Naturalness in C) {TalD}C is a natural isomorphism in C, that is,
Jo.c°Telp =70 p° (Fge,cr)
or equivalently,

to.p(fe.ap e 90.c) =Te.n(fo.ap) © oo o

= Definition

In the context of Theorem 101, if any one (and therefore all) condition holds from each of section
1) and section 2), then

1) the family {Tc p}c,p is binatural in C and D,

2) the triple

A= (Feep,Gp=c. {Tc.p}e.p)
is called an adjunction from C to D,

3) the functor F'is called a left adjoint of G, denoted by ' G and the functor G is called a
right adjoint of F, denoted by F'\- G. O
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The Unit-Counit Structure

Theorem 101 is centered on the families {7¢ p }¢,p of bijections. We can also take the point of
view of the families of maps

{uc:C — GFC}¢ and {vp: FGD — D}p

To begin, we note a special case of the fusion formulas that involve only these two families.
Specifically, setting C'= GD and hpgp,p = vp in the first fusion formula gives

Télp,D(UD) = Gup o uc
But vp = 7¢p,p(lgp) and so
Gupeuc = lgp
Similarly,
vpe © Fuc = lpc

It will be convenient to call these two formulas the basic fusion formulas.
Now, in the setting of Theorem 101, if f: C'— (", then

uC' o f:C — GFC'
and so the direct fusion formula gives

7o, re (e © f) = vper © Fuer o f)
= VUpcr oFuC; oFf

= vpc © F1e)peo(lper) o Ff

=lpe o Ff
=Ff
Hence,
TE‘,IFC’ (ch,c’) =ueg ° fo o (102)

and the inverse fusion formula gives
GF fo,crouc = uc © fo,or

This says that the family {uc}c is a natural transformation from the identity functor to the
composite functor GF;

{UC}C: IC - GF
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Dually, we leave it to the reader to show that the fusion formulas also imply that
vp o FGhpy p=hp povpy
and so
{vp}: FG = Ip

Thus, the units and counits of an adjunction are natural transformations. Of course, they also
satisfy the basic fusion formulas.
Conversely, suppose that we start with natural transformations

{uc}e:le > GF and {vp}p: FG = Ip
that satisfy the basic fusion formulas. Then we define a family of maps
T¢, p: home(C,GD) — homp(FC, D)

by what would be the direct fusion formula

Te.n(fe.ap) =vp° Ffeap (103)
The naturalness of {uc} and the basic fusion formulas give for any f: C — GD,
G(vp o Ff)ouc= GupoGFfoug
=Gupougpeo f
=lgpof
=f

and so

GTC,D( fC,GD) cUuc = fc,GD

Hence, 7¢ p has left inverse

pe,p(hre,p) = G(hre,p) © uc (104)

Moreover, the naturalness of {vp} and the basic fusion formulas imply that for any h: FC' — D

7e,0(pe,p(hre,p)) = vp © F(Ghpe,p © uc)
= UDOFGhFC,D OFuC
= hrc,p ° vrc © Fuc
= hrc,p o lrc
= hrc,p

Thus, the maps 7¢,p are bijections, us p = 75] p and so (103) and (104) are the two fusion
formulas. In summary, the fusion formulas imply the naturalness of the families {uc}¢ and
{vp}p (and the basic fusion formulas) and conversely, the naturalness of these two families and
the basic fusion formulas imply the fusion formulas.

This calls for a definition followed by a theorem.
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= Definition
Let F:C = D and G: D = C be antiparallel functors. The triple
N = (Fep, Gp=c. {ucte. {vn}p)
where uc: C — GFC and vp: FGD — D is called a unit-counit structure if
{uctele = GF and {vp}p: FG = Ip
and if these families satisfy the basic fusion formulas
Gupouc =1lgp and vpco Fuc = lpc

In this case, the maps uc are called units and the maps vp are called counits. The family {uc }c
is also called a unit and the family {vc}p is called a counit. O

=  Theorem 105
Let F:C = D and G:D = C. Then the following are equivalent.
1) The triple

A= (Fe=p,Gp=c. {uc}e.{vn}p)
is an adjunction and
ue = TE,IFC(IFC) and vp =71ep.p(lep)
2) The triple
N = (Fesp,Gp=e,» {ucke,, {vn}p)
is a unit-counit structure and

re.p(fe.ap) =vp o Ffoap

We should point out that unit-counit structures are often notated quite differently in the
literature. In particular, the unit maps u is often denoted by 7 and the unit family {uc }, by 7.
Also, the counit maps v, is often denoted by €, and the counit family {vp}, by €. Further, the
composition Gvp © ugp is denoted by (Ge o nG)(D) (as if category theory wasn’t difficult
enough without such notation) and the composition vg- © Fuc by (eF o Fiy)(C). Finally, the
unit-counit conditions are written

GeonG=1p and eFoFn=I¢
and one often sees the diagrams

G 6FG S G and FLLFGF-LF
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Uniqueness of Adjoints

Adjoints are not unique, but they are unique up to natural isomorphism. Here is the formula-
tion for left adjoints.

= Theorem 106
The left adjoints of a functor G: D = C are unique up to natural isomorphism, that is, if ' 4 G,
then
F4AG & F&F
= Proof

Since F' - G, we have

GFfouc=ugof (107)

Moreover, F' - G if and only if
GFEfotuc =1 o f (108)

Assume first that (108) holds. We want to show that there is a natural isomorphism
{\c¢}: FAF, that is, that

Ff=XroFfol! (109)

for all f: C' — C'. But since (FC, uc: C — GFC) and (FC’, uc: C — GFC’) are universal
pairs for (C, G), Theorem 74 implies that there are isomorphisms Ac: FC = FC for which

e = GAo o uc

Hence, the properties of the units imply that
G o Ffodi") otic = G(Ap) o G(Ff) o G(AZ') 0 GAc o uc
=G(Ac) e G(Ff)ouc
=GAc)ouc o f
=g o0 f

= GFf o Uc

and since the map § — G§ o v¢ is injective, we get (109).
For the converse, suppose that (109) holds. Then A¢: FC — FC for each C € C. Let

e = GAo o uc
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Summary
Then
GFfotc= G\ o FfoAy')otuc

=G(\er) o G(Ff) o G(A:') o GAc o

=G(\o) o G(Ff) ouc

=G(Ag)ougof

= o f
which is (108). O
Summary

Let us summarize the definition and characterizations of adjoints.

= Theorem 110
Let F:C = D and G: D = C be antiparallel functors and let

{re.p} = {rc.p}e.p: home(C, GD) « hom¢(FC, D)
be a family of bijections. Let
ug = Ta}Fc(ch) and vp=71ep.p(lep)
1) The following are equivalent:

a) (Mediating morphisms) The maps {T¢ p}p are the mediating morphism maps for the
universal pairs (FC, uc: C' — GFC), that is, T¢, p( fo,ap) is the unique solution to the
equation

Grop(fe.ap) °uc = feap
b) (Right Fusion formula) The maps {Tc p}p satisfy
TE,ID(hU,D) = Ghy,p °uc
¢) (Naturalness in D) {7¢ p}p is a natural isomorphism in D, that is,
Tc,p ° (GhD,D’)(_ = hB, p °Tc,b
or equivalently,

7e.0(Ghp.p o fo.ap) =hpp ote,0( fo.ap)
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2) The following are equivalent:
a) (Comediating morphisms) The maps {TE}D}C are the comediating morphisms for the

couniversal pairs (GD, vp: FGD — D), that is, TE’ID(hFC,D) is the unique solution to the
equation

vp o Frg!p(hee,p) = hrep
b) (Left Fusion formula) The maps {7z',,}. satisfy
7e,p(f) =vpo Ff
¢) (Naturalness in D) {Tal Dte is a natural isomorphism in C, that is,
Je.c oo =Top© (Fgcer)”
or equivalently,
T D (fc,GD ° 90/,0) =71c.0(fe.an) ° Foo.c
3) If one (and therefore all) conditions hold from each of section 1) and section 2), then the

family {T¢,p}e p is binatural and F'is a left adjoint of G and G is a right adjoint of F.
4) (Unit-counit structure) The family {T¢ p}c,p is binatural if and only if the 4-tuple

N = (Fesp,Gpoc. {ucte. {vn}p)

is a unit-counit structure, that is, if and only if
a) uc: Ic — GF, that is,

GFfccouc =uc o foor
b) vp: FG — Ip, that is,
Up © FGfD',D = fD’,D °Vp
c) The basic fusion formulas hold,
Gupouc =1gp and vpco Fuc = lpco
d) Also,

Te.p(fe.ap) =vp o Ffcap
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Examples of Adjoints

Now it is time to consider some examples. Speaking in general terms, suppose that G: D = Cis
a functor and that for every C'€C, we have identified a universal pair

(U,ue: C — GU)

along with the mediating morphism map 7 . One possible strategy for finding a left adjoint
F of G is as follows.
First, we set FC' = U for all C'€C. As to the arrow part of F, equation (102)

—1
Te,rc' (FfC,C’) =uc ° foor

can be written as
Ffoo =7crc (U © fo.o)

and this completes the definition of the functor F, but it remains to show that F' 4 G. This is
where Theorem 110 provides several alternatives (that is, pick one from section 1 and one from
section 2).

= Example 111 (Free Groups)
First a few observations about free groups. If F'y is the free group on a nonempty set X, then a set

function f: X — A from X to a group A induces a group homomorphism f: Fx — A defined
by

Fayay) = (fo) ™ (fza)™

where z; € X. More generally, a set function f: X — Y induces a group homomorphism

f: Fx — Fy between free groups.

Now let Set™ be the category of nonempty sets and let G: Grp = Set” be the underlying-set
functor, which forgets all algebraic structure and sends group homomorphisms to set
functions. We have seen that the family

{(Fx,ux: X — GFx)}x eset
where ux is set inclusion is universal. Now, the mediating morphisms

Tx, 4: homgee (X, GA) — homgep(Fx, A)

are given by the equation

G(txa f)oux =f
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for all set functions f: X — GA and so if x € X, then
x4 f(x) = f(2)

which means that 7x 4(f): F'y — A is the group homomorphism that agrees with f on X, that
is,

Tx,a(f) = f

A candidate for left adjoint F: C = D is the functor with object part FX = F'x and arrow part
satisfying

FfX,Y = 7'X,A(UY ° fX,y) =uyo fX,Y = fX,y
To verify that F' 4 G, we check the binaturalness of 7x, 4. The naturalness of 7x, 4 in X is
Tx.alge f)=Tx a(g) o Ff

that is,

gef=gof
forall f: X — X' and g: X’ — G A, which is true. Naturalness in A is
Ty 2(Ggo f)=goTyx alf)

that is,

forall g: A — A’ and f: X — G A, which holds since g is a group homomorphism. Thus, the
free group functor is the left adjoint the forgetful functor. O

= Example 112

Let U: Vect;, = Set” be the underlying-set functor. In a manner similar to that of Example
111, one can show that the functor that sends each nonempty set X to the vector space kx
over k with basis X and sends each set function f: X — Y to the unique linear extension
T: kx — ky is a left adjoint for U. O

= Example 113

Let X be a set. The set of all functions from X to Z is denoted by Z~. The support of a function
a: X — Zis the set

supp(g) = {w€ X|(z) # 0}

Let Z denote the set of all functions in 7% with finite support. For example, for any z, € X,
the indicator function e,; X — Z defined by
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(2) = 1 x=ux
€2t} = 0 x#x

has finite support. Note that any € Z;* has a unique expression as a finite sum

a= Z a(z)e,

x € supp(a)
Now let G: AbGrp = Set be the underlying-set functor. For each nonempty set X, the pair
(Z& ux: X — Z)

is universal, where u x(x) = €,. To see this, if f: X — G A, where A is an abelian group, then the
mediating morphism 7y (if it exists) is the unique map for which

Trouyxy = f
Applying this to x € X gives
7j(€) = f(2)

and so 7y exists and is uniquely defined by

for any a € Z". Thus,

@ = Y a@)f@)

z€supp(a)
If F Set = AbGryp is a right adjoint for G, then
FX =17
and
FfX,X’ = TX,A(UX’ ° fX,X’)
Applying this to a € Zg" gives

F(f)la)= Y a@(uyofHa)= Y al@)ew

xzesupp(a) zesupp(a)

for f: X — X'.
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Again we check binaturalness. The naturalness of 7x 4 in X is
Tx.alge f) =7x,a(g) o Ff
for all f: X — X’ and g: X’ — GA. To see if this holds, note that for o€ Z:", the left side is

Txalge Nla)= Y al@)(ge f)(x)

xesupp(a)

and the right side is

zesupp(a) zesupp(a) zesupp(a)

TX’,A(9)< > a(@ﬂ"(m)) = Y a@rea@)(egw) = Y a@)(g(f(@)

and so the naturalness in X condition is met.
Naturalness in A is

Txa(gef)=goTxalf)
forall g: A — A’ and f: X — GA. Applying this to a €Z;" gives

Txalge )= Y alz)ge f)(x)

zesupp(a)
and
gorxaN@ =g Y al@)f@)|= Y  alz)(gef)(z)
xesupp(a) xesupp(a)
and so the naturalness in A condition is met. Thus F'is a right adjoint of G. O

= Example 114
Let C be a category with finite products. For a product

P=(CxD,p;:CxD—C,p,CxD— D)

we denote the unique mediating morphism from a cone
(X, X—>C,: X— D)

to P by the 2 x 1 matrix

(J)x—cxp
Y
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Thus, <£) is uniquely determined by the conditions

()= 1 i e (1) =
g 9

Recall that if f: D — D' and g: E — E’ are morphisms in C, then their product is defined to be
the unique mediating morphism for the composite maps

fo DxE
f><g—< pjle :DxE—-D xFE
gopy”

Hence, f x g is the unique map for which

p " E o (fxg)=fopF

fori=1,2.
Now, the whole story of this example is shown in the rather ghastly diagram in Figure 65.
B
U=
Te
o > CxC (C,C)
pi*z vi‘c A
|
|
C C & : (Tn‘cz)
f T,XT, |
T, T, :
\
DxE (D,E)
5 L N c
C ecxe
Figure 65

Let C x C be the product category. Define the diagonal functor A:C = C x C by
AC=(C,C) and Af=(ff)

where (f, f): (C, C) — (D, D) acts coordinatewise. In the other direction, define the product
functor I1: C x C = C by

fop?*®
[I(D,E)=DxE and [](f.9)=fxg=

gopy ¥
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To see that A is a left adjoint of I, we first show that the pair

U= <(C,C),{uc: (12);0-»@&0})

is universal. Note first that u¢ is the unique mediating morphism satisfying

p*Couc=1¢c and p§*Couc =l

The universal condition is that for all f: C'— D x E, there is a unique morphism (73, 7,):

(C, C) — (D, E) for which
(TIOP?XC>O<IC>_JC
5 0 p§*¢ lo

Applying pP*E for i = 1, 2 gives

70 C><Co<10>_ DxE
i°pP; | =P f
C

that is,
Ti = P?XE °of
which uniquely defines 7;. Hence, U is universal and
TC,(D,E) (fC,DxE) = (P{DXE ° fC,DxEsp?XE ° fC,DxE)

The naturalness of 7¢, (p,i) in C'is

7o (0.5 (fe,pxp © 9or0) = 7o) (Fe,pxE) © (90,01 9,¢)

But
T¢'(D,E) (fC,DxE ° gc’,c) = (P?XE ° fC,DxE ° 9o, c> P?XE ° fC,DxE ° 90’,(:)
= (P?XE ° fC,DxE’ PzDXE ° fC,DxE) ©° (90/,0790’,0)
=710 (fe.pxr) © (90.0,90.0)
and so this holds.

The naturalness in D is

TC, (D’,E’)([hD,D’ X kE,E’] ° fC,DxE) = (hD,D’:kE,E’) °TC,(D,E) (fC,DxE)
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But,

e, 0,5) ((hp,p X kp,p) © fo.pxr)

D'xE o (

= (pf ho,p X ki) © fopep Py P o (hp o X ki i) © fo,per)

D D
= (hD,D’ °p1 “Fo fepxp ke p © p) “Fo fC,DxE)

= (hD,D’ X kE,E’) ° (P?XE ° fe pxEs P?XE ° fC,DxE)

Thus, both naturalness conditions hold and A - I1. O

Adjoints and the Preservation of Limits

As shown in Figure 66, a functor G: D = C preserves limits if for any limit
K=V, {fu:V— An‘nej})
over a diagram D in D, the image cone

FK = (FV,{Ff,:FV — FA,|n€eJ})

is a limit over the diagram GD in C.

Figure 66

In an earlier exercise, we asked the reader to show that for any A€C, the hom functor
hom¢ (A, -) preserves limits.

= Theorem 115
If a functor G: D = C has a left adjoint F: C = D, then G preserves limits.

ms@ms.lt



134 Chapter 5- Adjoints

= Proof
With reference to Figure 67, let

L=V {fpV—D|DeJ(T)})
be a limit of the diagram D(J: J = C) in D and let

GL = (GV,{Gfp:GV — GD | DeJ(J)})

be the image cone in C.

Figure 67

To see that GL is a limit of GD, let

X = (X,{hp:X — GD| DeJ(J)})
be a cone over GID in C. Taking the image of X’ under the bijective mediating-morphism maps

Tx,p: home(X, GD) < homp(FX, D)
gives

Tx,pX = (FX,{rx,php: FX — D | DeJ(J)})
To see that 7X is a cone over D, we must show that
Tx,phg = ap g 7x php (116)

But the naturalness of 7 x. p (see Theorem 64) implies that for each a: D — F'and 8: X — G D,

T;(}E(Oé]),E o7x,p(f)) =Gappohp=hg

and so (116) follows.
Since T is a cone, there is a unique mediating morphism 6: F’X — V for which

fDOQZTX,DhD
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Moreover, the map
T}}DG =Glouy
is a cone morphism from &' to GL, since
Gfpo(GOoux)=G(fpeb)eux =G(rx,php) o ux =hp

It remains to show uniqueness. If A\: X — GV satisfies

GfpeA=hp
then
7x,0hp = Tx,p(Gfp° A) = fp ° Tx,pA
since
G(fpotx,pA)oux =GfpoG(Tx,pA)oux =Gfpo A
and so the uniqueness of ¢ implies that A = 7! ,6. O

The Existence of Adjoints

We now come to one of the most important theorems in category theory, called the adjoint
functor theorem, which characterizes the existence of adjoints. Let us state the theorem now.
The proof will follow shortly.

= Theorem 117 (Adjoint functor theorem)

Let D be a complete category. A functor G: D = C has a left adjoint F: C = D if and only if the
following hold:

1) G preserves limits

2) G satisfies the solution set condition for all C' € C. O

The Solution Set Condition

To understand the solution set condition, let us start from the bottom and work up. Let
G:D = Cand let C € C. We refer to a map of the form f: C' — GD, for D € D as a source
morphism. For any source morphism f, we refer to a factorization of the form

Grou=f (118)
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where

wC—GS and 75— D

as an (S, u)-factorization for f with mediating morphism 7. The pair

U=(SuC—GS) (119)

for which there is an (S, u)-factorization of f is known as a solution for f (although it may
seem more reasonable to refer to the mediating morphism 7 as a solution for the pair (S, w)).
We call the object S a solution object and the map u in a solution (.S, u) a solution map.

Thus, a pair (S, u: C' — GS) is universal if and only if every source morphism has a unique
(S, u)-factorization. We can weaken the universality condition by removing the requirement
that mediating morphisms must be unique. Let us say that a pair (S, u: C — GS) is
quasiuniversal (a nonstandard term) if every source morphism has a (perhaps nonunique)
(S, u)-factorization. Put another way, a pair (S, u: C — GS) is quasiuniversal if it is a solution
for all source morphisms.

Actually, any morphism f: C'— GD has at least one (S, u)-factorization, namely,

Glpof=f
that is, any morphism f: C'— GD has at least one solution

(D, f:C — GD) (120)

So it might seem now that this definition is useless, but stay tuned.

A solution class S for G: D = Cand C € Cis any class that contains a solution (S, u) for
every possible source morphism f: C'— GD and every D € D. Any class that contains the
pairs (120) is a solution class. However, in general, solution classes are proper classes, that is,
they are not sets. We can now define the solution set condition.

= Definition
A functor G: D = C satisfies the solution set condition for a given C' € C if there is a solution
class that is actually a set. O

In more colloquial terms, G: D = C satisfies the solution set condition for a given C' € C if
there is a set worth of pairs (S, u: C'— G.S) that provide a solution for all source morphisms.

Note that a solution { is quasiuniversal if and only if the set {/} is a solution set and so if a
quasiuniversal pair exists for (C, ), then G satisfies the solution set condition for C.

One half of the adjoint functor theorem now follows quite easily. For if
U= (U,u:C — GU) is a universal pair for (C, G), then G has the solution set condition
for C. Therefore, if G has a left adjoint, then G satisfies the solution set condition forall C' € C.
Since we have already proven that G also preserves limits, we have proved one half of the
adjoint functor theorem. To prove the converse, we must take a closer look at factorizations
and solutions.
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A Closer Look at Factorizations and Solutions

Solutions have a form of “absorption property” described as follows. Suppose that a source
morphism f: C' — GS has a solution (.S, u) with factorization

Grou=f
If (T, v) is a solution for u with factorization
Goov=u
then
G(teo)ov=GroGoov=Grou=f

and so (7, v) is also a solution for f. Therefore, if (7, v) is a common solution for all solution
maps in a solution set S¢, then (7, v) is a solution for every source morphism. Let us record
these facts in a theorem.

= Theorem 121

Let G:D = Candlet C € C.

1) If (S, u) is a solution for f: C — G'D then any solution (T, v) for the solution map u is also a
solution for f.

2) IfSc is a solution set for C and if (T, v) is a common solution for every solution map w in S¢,
then (1, v) is a quasiuniversal pair for (C, G).

3) If(S, u) is a quasiuniversal pair for (C, G) and if (T, v) is a solution for u, then (T, v) is also a
quasiuniversal pair for (C, G). O

Figure 68

= Theorem 122
As shown in Figure 68, let G: D = Cand let C' € C have solution setSc. Assume that the product

P= (P, {pi:P — S; ‘ (Si,u;) € S(;})
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of the solution objects S; for (S;,u;) € Sc exists and that G preserves this product, that is, that
GP = (GP, {Gpl»: GP — GS; | (Si,u;) € SC})

is a product of the objects G.S; for (S;, u;) € Sc. If 0: C — GPis the mediating morphism for the
cone

K= (C, {ULC — GSZ ’ (Sz',ui) (S SC})

with vertex C' and whose legs are the solution maps u;, then the pair (P, 0) is quasiuniversal for
(G, G).

= Proof
Since

Gp;o0=u;

for all ¢, 6 is a common solution map for all of the solution maps w; in the solution setS¢ and so
the pair (P, 6) is quasiuniversal for (C, G). O

The Adjoint Functor Theorem

We can now prove the adjoint functor theorem.

= Theorem 123 (Adjoint functor theorem-Freyd 1964)

Let D be a complete category. A functor G: D = C has a left adjoint F:C = D if and only if the
following hold:

1) G preserves limits

2) G satisfies the solution set condition for all C € C.

= Proof

One direction has been proved. Assume that 1) and 2) hold. Fix C' € C. Since C' has a solution
set, Theorem 122 implies that there is a quasiuniversal pair (S, u) for (C, G). The story of the
proof that there is a universal pair for (C, G) is told in Figure 69.
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Figure 69

By way of motivation, since (S, u) is quasiuniversal and u: C' — GS, there is a mediating
morphism 7: S — S for u itself, that is,

Grou=u

Of course, the identity is one such mediating morphism, but there may be others. Suppose that
T is one such nonidentity mediating morphism. If f: C'— GD is a source morphism, with
mediating morphism o, that is, if

Goou=f

then Theorem 121 implies that o o 7 is also a mediating morphism for f. Therefore, it is
unlikely that (S, ) will be universal.

This gives us the idea of trying to find a quasiuniversal pair (E, ) for which 6 has only one
mediating morphism (which will be the identity). One way to achieve this goal is to equalize all
of the mediating morphisms for u with respect to (.S, w).

So let

T = {TZSHS{GTO’U,:’U,}
The right side of Figure 69 shows two such maps 7; and 7;. Let
E=(E,e:E—S)

be the equalizer of the set 7. On the left side of the figure, we find the G-image of this structure,
along with the cone

K= (C{uw:C— GS})

over GID. The cone condition for K is that

Griou=mu

which is precisely the condition that 7; € 7. Now, since G& is an equalizer of G7T, there is a
unique mediating morphism 6g: C' — GE for which
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Geolg =u (124)

We wish to show that (£, 0) is a universal pair for (C, G).

Equation (124) says that (E, ) is a solution for u and so Theorem 121 implies that (£, 6 )
is a quasiuniversal pair for (C, G). It remains to establish uniqueness of mediating morphisms.
So let f: C'— GD and suppose that

GUOQE:f:GO'IOQE

foro,0’: E— D.Let (Q, ¢: Q — E) be the equalizer of o and ¢’. Then (GQ, G¢: GQ — GE)
is the equalizer of Go and Go’ and so there exists a unique : C' — GE for which

Gqobg=0p
Since 0 : C'— G, there is a ¢: S — () for which
Gopou=10tg
Now, if
og=e°qo¢
then
Goou=GeoGqoGpou
=GeoGgolby
= Geobg
=u
and so o € 7. It follows that 0 o e = 7 o e for all 7 € T, including the identity 15 € 7. Hence,
e=cgoe=¢eoqo¢goe
Since e is monic, this gives
qgepoe=lg

which shows that the monic ¢ is also right-invertible and is therefore an isomorphism. Thus,
o o ¢ =0 o ¢qimplies that o = ¢’. This establishes uniqueness and shows that (E, 0g) is
universal. Hence, G has a left adjoint. O

= Example 125
The adjoint functor theorem can be used to prove that the forgetful functor U: Grp = Set has a
left adjoint F. This means that free groups exist for every generating set X!

To see this, suppose that X € Set. We must show that there is a set worth of pairs (H, u:
X — H) that provide solutions for every set function f: X — A, where A is a group. Let B be
the subgroup of A generated by the elements of f X. The generating set W = {fz;} U {( fr)™
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has the same or smaller cardinality as X and so the cardinality of B is bounded by the
cardinality of X, say |B| < a(] X]).

Now, consider a particular cardinality k£ < (] X|). The family of all sets of cardinality & is
not a set. However, we can construct all groups of cardinality & up to isomorphism by taking a
single set S of cardinality k and scanning all of the k functions f: S x S — 5, picking out the
legal group operations. This shows that a family consisting of one group from each isomor-
phism class from among the groups of cardinality max{x, No} is a set. Indeed, a family F
consisting of one group from each isomorphism class from among the groups of cardinality
max{k, (| X])} is a set.

Finally, the family of all pairs (H, u: X — H) for H € F and all maps w is a solution set for
X. Hence, the solution set condition holds for every X € Set and so the forgetful functor
U: Grp = Set has a left adjoint. This is a proof that free groups exist. O

Exercises

1. Let F:C = Dand G: D = Csatisfy F1G. Let F": £ = Cand G":C = & satisfy F' 4 G'.
Prove that Fo F/ 4G’ o G.

2. Let Set, be the category of pointed sets and pointed functions. Let U: Set, = Set be the
underlying set functor. Find a left adjoint for U.

3. Find a left adjoint of the underlying-set functor U: Rng = Set.

4. Let 1 be the category with a single object 0 and a single morphism 1. Let C be a category
with initial objects. Let G:C — 1 be the constant functor. Find the left adjoints of G and
their mediating morphism maps 7.

5. Let I: AbGrp = Grp be the inclusion (forgetful) functor that forgets the commutativity
of an abelian group. Show that the functor that takes a group C to the quotient group
CI1C, C, where [C, C] is the derived (commutator) subgroup of C'is a left adjoint of U.
What is the unit?

6. LetI: Tor = AbGrp, where Tor is the category of all torsion free groups (groups in which
all elements have finite order) be the inclusion (forgetful) functor. Show that [ has a right
adjoint.

7. Let U: Mody = AbGrp be the forgetful functor that forgets the scalar multiplication. Show
that the functor that maps an abelian group A to the tensor product R ® ZAisa
left adjoint of U. What is the unit?

8. A group G is Boolean if every nonidentity element of G has order 2. Let U: BoolGrp = Grp
be the forgetful functor. Use the adjoint functor theorem to show that U has a left adjoint.

9. Let Idem be the category whose objects are ordered pairs (X, v), where v: X — X is an
idempotent unary operation on X, that is, v* = v. The morphisms f: (X, v) — (Y u) are
the set functions f for which f o v =u o f. Let I: Set = Idem be the functor for which

IX=(X,1) and If=f
for f: X — Y. Let F: Idem = Set be the functor for which

F(X,v) = fix(X,v): = {z € X | vz =2}
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and
Ff=f ’ fix(X,v)

for f: (X, v) — (Y, ). Verify that I and F'are functors. Show that F'is both a left and right
adjoint for I.
Let F: D = Candlet h: C' — C" and k: C' — C” be morphisms in C. Suppose that

(Sc,uc: C — FSc), (Sersue: C' — FSer), (Sen,uen: C" — FSen)
are universal pairs. Prove that
T’uc-u okoh = TUCH ok o Tuc/ oh

(Galois connections) Let P = (P, <)and Q = (Q, <) be preorders, which we can think of

either as categories or as preordered sets.

a) Show that an order-preserving function F* P— () can be viewed as a functor from Pto
Q and conversely. Show that an order-reversing function F: P — () can be viewed as a
functor from P to Q°° and conversely.

b) A Galois connection from P to Q is a pair

(F:P—Q,G:Q — P)
of antiparallel order-reversing maps for which

p<GFp and q< FGq (126)

for all p € Pand ¢q € Q. Prove that for order-reversing maps F'and G property (0) is
equivalent to the statement that

p<Gq iff ¢<Fp

c) If (F, G) is a Galois connection from P to Q, show that F: P = Q% and G: Q®° = P
are adjoint functors.

d) Show that if F: P = Q% and G: Q° = P are adjoint functors then (¥, G) is a Galois
connection from P to Q.

(The category of inverse adjunctions) Let C, D and & be categories and let

F:C=D,G:D=C
and
F':D= &G E=D
be pairs of antiparallel functors. Let
{r¢, prhome(C, GD)Ahomp(FC, D)}

and
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13.

{up, p:homp(D, G'E)~homg(F'D, E) }

be inverse adjunctions (that is, inverses of adjunctions) from C to D and D to &

respectively.

a) Show that we may compose the inverse adjunctions 7 and f to get an inverse
adjunction

{\c. p:home(C, GG'E) A homp(F, FC, E)}

from C to £ for the antiparallel functors F'F:C = £ and GG": € = C.
b) Show that the unit u) - of A is given by

uxn,c = Guy. Fe © Urc

c) Show that we can form a category Adj whose objects are categories and for which the
morphisms in hom(C, D) are the triples

(F:C = D,G:D = C,{)\C,D})
where {\¢p} is an inverse adjunction from C to D.

Let Vbe a vector space over a field k. Let Fy,: Vect = Vect send Wto W ® V, the tensor
product over Fand f: W — W to

fRlywWeV-WeVv
defined by
(fely)(zev) = frev
Show that
(LV,W),e: LV, V)RV — W)
is a universal pair from Fyj to W, where e is evaluation:
e( fov)=fo

for f e L(V,W).
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Chapter 1

3. Suppose that f: FC'— FC' is an isomorphism. Since F": hom¢(C, C'’) <> homp(FC, FC')
is a bijection, there is a g: C'— C' for which Fg = f. Moreover, the same argument applied
to £~ shows that f ' = Fh for some h: C' — C. Thus,

F(hog)=FhoFg=f"of=1lpc=F(c)

and since F': hom¢(C, C) < homp(FC, FC), it follows that h o g = 1. Similarly,
g o h =1 and so g is an isomophism.

5. The morphisms form a monoid under composition.

8. Poset(P, <) where P is nontrivial.

10. In Modp, the zero module {0} is a zero object. In Rng, where we postulate that a ring
morphism must send 1 to 1, the trivial ring {0} (in which 1 = 0) is not initial but it is
terminal.

13. Consider all subcategories of C with the same objects as that of D and that contain all of
the morphisms of D. The full subcategory is one such category. The intersection of all such
categories is the smallest such category. D is the subcategory of C with objects the same
as the objects of D and whose morphisms are the identity morphisms of objects in D, the
morphisms in I and the compositions of finite sequences of morphisms of D.

15. We must show that g = f ~'. With reference to the figure below,

{b..b,,b,b,}

A

where B = {b}, by, bs, by}, note that if b; # b; in B, then

g({oih) ng({bs}) = 9({bi} 0 {b;}) = 9(0) = 0
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Also,
Us(eh) = (U b:}) = 9(B) = 4

Hence, the sets g({b;}) form a partition of A. Now we can define f: A — B to send the
elements of g({b;}) to b; for all b; € B. Clearly, f =g

To show that monic does not necessarily imply injective, intuitively speaking, if the images
of all morphisms in a category C are confined to a “restricted” set, then f need only be
well-behaved on this set in order to be left-cancellable. With this guidance, consider the
category C whose objects are the subsets of Z and for which hom¢ (A, B) is the set of all
nonnegative set functions from A to B, along with the identity function when A = B. In
this case, the images of all nonidentity morphisms are contained in the natural numbers N.
Now, the absolute value function a: Z — N is monic since « o f = f for all morphisms
fin C. On the other hand, « is clearly not injective.

To show that injective (and therefore also monic) does not necessarily imply left-
invertible, consider the inclusion map x: Z — Q between rings, which is injective.
However, £ is not left-invertible, since a left-inverse o: Q — Z would satisfy o o k =1,
that is, o(k) = k for all integers k. This is not possible since, for example, it would imply
that 0(1/2) = 0(1)/0(2) = 1/2, which is not an integer.

To see that epics are not necessarily surjective, if we can find a category in which each
morphism leaving an object A is completely determined by its values on a proper subset
S of A, then the inclusion map i: S — A, which is not surjective, will be right-cancellable.
To this end, the monoids N and Z are additive monoids. Moreover, the inclusion map
k: N — Z is not surjective. However, it is epic since if

go,tg:ho,tg

for g: Z — Cand h: Z — C then g and h agree on all nonnegative integers. This implies
that g = h, since for n > 0, we have (where e is the identity in C)

(=n)*h(n)]*h(—n)
= [g(=n) = g(n)] * h(—n)
(—n +n)xh(—n)

(

Finally, to see that surjective (and therefore epic) maps are not always right-invertible,
let C' = (a) be a cyclic group and let H = (a?). Consider the canonical projection map
m: C — C/H = {H, aH}. This map is surjective, but it is not right-invertible. In fact, any
group morphism o: C/H — C must send aH, which has order 2 to an element o(aH)
of exponent 2 and so o(aH) = 1. Since o(H ) = 1 as well, the only group morphism from
C/H to C is the zero map.
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19. Suppose that f is epic. Define o, 8: B — B ® B by
ab)=1®b and p(b)=>b®1
Then
ao fla) =1 f(a) = fla)(1®1) = fla) @1 = e f(a)
andso a0 f= [ o f,whencea = (3, thatis,1 ® b=0>b® 1forall b € B. For the converse,
supposethat l® b=b® 1 forallb € B.Letw o f= (3 o f, where c, : B — R. The ring
mapa o f= o fi A— R makes R into an A-module via
axr=(af(a))-r=(6f(a)) r
Now, define a map a x 3: B x B — R by
(@ x B)(b,¢) = (ab)(fe)
which is A-bilinear since
(a x B)(ab, c) = a(ab) - fe = a(f(a)) - ab- fe = ax(a x B)(b,c)
and so there is a unique : B ® B — R for which
0z @ y) = (@ B)(z,y)
In particular,
0(1®b) = (a®B)(1,b) = Bb
and

b 1) = (a®p)(b1)=ab

and so a = [.
23. The figure below shows the factorization of f and g.

A © >B
% ‘e/

f I(ie—J g

C — >D
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Since (m o m;) o e; =m, o (e, © e) and since each of these morphisms is in £ or M, there
is an isomorphism 6: J — I such that

ep =00 (eyoe)

Hence

f:mloel:mIOQO(ezoe):(mloeoez)oe

and we may take f=h o e.

Chapter 2

1.

Let F': C = D be a contravariant functor. Then since C and its opposite category C°F have
the same objects and the same morphisms (they even have the same hom-sets, but they are
associated to different pairs of objects), F'can also be thought of as mapping the objects
and morphisms of C°? to the objects and morphisms of D. Moreover, if f: A — B and
g: B — C are morphisms in the opposite category C°?, then

F(goopf):F(fog):FgoFf:Ffoong

and so F': C°®® = D is a covariant functor from C°? to D. Thus, a contravariant functor
F': C = Dis a covariant functor F': C* = D and conversely.

. For part a), to see that F'is well defined, if aG’ = bG', then b'a € G’ and so o(b™'a) € H'

(since o takes commutators to commutators). Hence, (ca)H' = (cb)H'. Also, F1 =1 and
ifo: G — Hand 7: H— K, then

F(r0)(aG') = (r0a)K' = Fr(0caH') = Fr(FoaG')

and so F(r0) = FrFo. For part b), the canonical projection is natural.

First, we must show that a group homomorphism f: G — H maps C(G) to C(H). But
f(abailbfl) = f(a)f(b)f(a)* f(bf1 € C(H) and so the subgroup of G that maps into
C(H) contains all commutators, and therefore contains C(G). Clearly C preserves the
identity and composition.

This map

homC(Bv ! ): f'_'fH
for f: X — Y defines a natural transformation

home(B, - )*: home(A, ) — homge(home (B, A), home(B, -))

[home(B, - )] x: home(4, X) — homgec(home (B, A), home(B, X))
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where
lhome(B, -)"]x(94.x) = 9~
In this case, naturalness is
f77 e [home(B, )] = [home(B, - )"y o f
for f:X — YinC. For any g: A — X, this is
7)) =(feo9)"
which is true, since
7T =g =(feg)

9. The identity map 1. is sent to the map

1C oprA,l prA,l
= = ICXA
lacoposan PCx A2

If f: C'— Dand g: D — E then

Ma(go f) = (910 fo PCox A1 >
A° PcxA2
that is,
PEsar ©TLalgoe f) =go foposa
and
PExa2 ©TLalg e f) = posan
But
Pexa1 o Mageaf=gepparelaf=go fopeya,
and

Pesar @ Magellaf=goppaollaf=go fopeya

11. For part 1), let A: F'=5 G be a natural isomorphism. Assume that G is faithful. To see that
Fis faithful, if f, g€hom¢(A, B) then
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Ff=Fg=AgoFfo);'=A\goFgo)\}
= Gf=Gg
=f=y

To see that F'is full, let h €¢hom¢(F A, FB). Let
k=Agoho);': GA— GB
Since G is full, there is an f: A — B such that Gf = k and so
h=Xg'okoXs — Az oGfory=Ff

Hence F'is full. For part 2), if G o F'is faithful then F'is faithful, for if f, g€hom¢(A4, B),
we have

Ff=Fg=GFf=GFg= f=yg

Also, if G o F'is full then G is full, for if h € hom¢ (A, B) then there is an f: A — B such
that h = GEf = G(FY).

A functor F: M = Grp picks out a single group FM. A morphism m € M is sent to a group
morphism Fm: FM — FM in End(F'M). The definition of functor is equivalent to saying
that m — Fm is a group homomorphism.

For part a), we have Card o I(n) = Card(n) = n and for fin — m, Card o I(f) = Card(f)
=0,, o fo8,= f Forparth),let F= I o Card. Note that FS = I o Card(S) = Card(S5),
thought of asasetand for f: S — T, Ff =0po fo 051. For any set .S, let Ag = 6. Then

Ffofs=0ro0fofs' ols=0rof

which is the condition for F'to be natural.

For part a), let f: A — B be a morphism inC. Then there must exist morphisms F'f: FA —
FBand Gf: GA — GB in P, which implies that FA < F'B and GA < GB. Moreover,
there are morphisms A\(A): FA — GA and A(B): FB — GBinPifand only if FA < GA
and F'B < GB, in which case transitivity implies that

GfoNA)=\B)o Ff

Thus, there is a natural transformation from F'to G if and only if FA < GA for all objects
A of C.

For part b), by part a), there is a natural transformation A from F'to G if and only if
FA < G A for all objects A in C, in which case there is exactly one natural transformation.
Since Obj(2) = {0, 1} and Mor(2) = {1¢, 1;, 01: 0 — 1}, a functor F'from 2 to D sends
0 and 1 to a pair of objects F(0) and F{(1) in D and the morphism 01 to a morphism
F(01): F(0) — F(1). Moreover, every arrow f: A — B in D gives rise to such a distinct
functor F; from 2 to D. Hence, there is a bijection between the objects (functors) of D* and
the arrows of D.
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21. Define a functor F": Set, = Set, as follows: F'sends A, = A + {*} to Aandif f: A— Bisa
partial function, then F/f: A, — B, sends all elements of A, \ dom(f) to . To see that F'is
a functor, note that F1 = 1,. Also, let f: A — B and g: B — C be partial functions. We
have
a) if z € dom(g o f) then (g o f).(2) = = = g.(f.(2))

b) if z € dom(f) \ dom(g o f) then (g o f).(x) =+ = g.(f.())

¢) if x ¢ dom(f) then (g o f)*(z) = * = g.(f.(z))

and so (g o f). = ¢g. © f.. Now, any pointed function o: A, — B, is the image under
F of the partial function o: 0~ '(B) — B obtained by restricting o to ¢~ '(B). Finally, if f,
g: A — B are partial functions for which f, = g,, then clearly f = g. hence, F'is an
isomorphism.

25. This follows from the contravariant version of Yoneda’s lemma. Alternatively, the
contravariant functorshome( - , A) andhomyp(F -, B) from C to Set are covariant functors
from C to Set. Hence, for any f: Y — X in C, the condition of naturalness is

A4, B(Y) ohome(f, A) = homp(F'f, B) o Ay, p(X)
But home( f, A) = f~ and homp(F'f, B) = (Ff)”, and so
Aap(Y)o f7 = (Ff)" oAy p(X)
Taking X = A and applying to 1 4 gives
Aap(Y) o f7la = (Ff)" e Aap(A)la
forany f: Y — A.But f 1, = 14f = fand so we get
Ap(Y)f = Aap(A)lao Ff

Finally, suppose that

Mp(X)f=(Ff) g=geFf
for all f: X — A, where g€homp(F' A, B). Then if f: Y — X in C, we have for any

h: X — A,

(Aa.p(Y)o f)h= A 5(Y)(ho f)
=goF(hef)
=goFhoFf
=(Ff)" o(goFh)
= (Ff)" o Xap(X)h

and so Ay p(Y) o f 7 = (Ff) o Ay p(X), showing that A4 p is natural.
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Chapter 3

1.

11.

The pair
(F(X),j: X — F(X))

where F(X) is the field generated by the elements of X, that is, the field of all rational
functions in the variables X over F, and j is inclusion, is universal for X and U.

. Let U: Alg(F) = Set be the forgetful functor, where Alg(F) is the category of F-algebras. The

pair (Flx],j: {z} — UF'[z]) is universal from {z} to U. For given any pair (4, g: {x} — U A),
we define 7: F[z] — A by 7(p(z)) = p(g(x)).

. A couniversal pair (V, h: S — V) for a set S has the property that for every set function

f: W — S, there is a unique linear map 7: W — Vfor which h o 7 = f. But 70 = 0 and so
h0 = f0 for all f. Hence, if |S| > 2 then there is no couniversal pair. If S = {s}, then take
V= (v) and h to be the constant function. If S = (), take V'= {0} and & to be the empty
function.

. To see that a) and b) are equivalent, note that

Teiplg o h) = Gg o melp(h)
for all h: U — D and ¢g: D — D’ is equivalent to

e (Ggorelp(h)) = goh

for all h: U — D and g: D — D'. But o = 74, (h) runs through all morphisms from C'to
GD as h runs through all morphisms from U to D and so this is equivalent to

Te,p(Gg e a) =geoTe,p(a)
for all a: C'— GD, which is in turn equivalent to
Top°(Gg)” =g  °Tep
Part ¢) comes directly from b) by setting i = 1;. Conversely, if 3) holds then
TE,ID’(Q oh)=G(goh)o TE,IDUU) =GgoGho TE,IDUU) =Ggo TE,ID’(h)

which is 2).
By a theorem, the family of bijections

{TC,D: homC(C’, FD) — homD(S, D)}DE D
is a natural isomorphism and so hom¢(C, F -) is representable if and only if the pair

U= (S,u:C— FS) where u=rg'¢(ls)

is universal.
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Chapter 4

3.

13.

15.

Let f: A — B. A coneis any morphism g: X — A.Ift: T — Aisterminal, then the mediating
morphism 6 for the identity map 1: A — A satisfiest o # =1 and so ¢ is right-invertible. Also,
t is monic and so an isomorphism. Conversely, an isomorphism ¢: T ~ A is terminal.

The cones over {f: A — B} are the same as the cones over the diagram {f: A — B,

f:+ A — B} and so a terminal cone is an equalizer of {f, f}, that is, an isomorphism.

A morphism in Field is either the zero map or an embedding. Let P = (P, p;: P — A, p,:
P — B) be a product. Since hom(A, B) # (), projections are surjective and so
isomorphisms. Thus, P= A x B is isomorphic to A and to B. The product construction
implies that for any (X, f: X — A, g: X — B) there is a unique §: X — P such that

pie=f and pyof=g

Now, if f = 0 then 6 = 0 since p; is an isomorphism. Hence, g = 0. Thus, the cone
(B, 0, 15) has no mediating morphism.

Lexicographic order does not work because the second projection is not monotone.
However, product order works just fine.

Consider the category with 4 objects and 9 morphisms, as shown in the commutative
diagram below What is the dual of this result?

f k
AS —B< P~ >cC
9

Since the only cone over {B, C} is (P, h, k), this must be the product of B and C. However,
h is not epic since fo h =g o hbut f# g.
For part a), let f, g: M — N be R-maps. Let A = im(f — g) and let m: N — N/A be the
canonical projection map. Then for m € M,

mo (f~g)(m) = A

andsom o f(m)=m o g(m), whencem o f=m o g.Now, if h: N — X satisfiesh o f=ho g,
it follows that h o (f — g) = 0and so A =im(f — g) < ker(h). Hence, there is a unique map
0: N/A — X for which 6 o m = h, as desired.

For partb), let f, g: R — S be ring homomorphisms. Let A = im(f — ¢g) andletm: S — S/ I
where I = (A) is the ideal generated by A and 7 is the canonical projection map. Then for
re R,

mo(f—g)(r)=1
and so o f(r) =m o g(r), whence w o f=m o g. Now, if h: S — X satisfiesh o f="h o g,

it follows that b o (f — g) = 0 and so A = im(f — g) < ker(h). Hence, there is a unique
map 6: S/I — X for which 6 o 7 = h, as desired.
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17. Since u,: {x} — S,, we have
GEy o uy: {2} — GC

and so u|(,; = Gk, o u,. Now, let f: X — GE for E€D. Then f |(,: {z} — GE and so
there is a unique 7,: .S, — F for which

G0 ug = flia
The definition of coproduct implies that there is a unique #: C'— E for which
Ooky =1,
for all z € X and so there is a unique 6 for which
GO0 ry) oy = flay
(this follows from 6 o k, = 0’ o K, for all z implies § = #'). This is equivalent to
(GO o Gry 0 ug)(x) = f(2)
that is,
(GOou)(z) = f(x)

and so GO o u = f, as desired.
19. Consider the category shown below.

1232 >

1 a

1 \y/ 112
2, N
/ ~\

M ———>012

21. The essence of the proof is that there is no real difference between the two diagrams in the
figure below

/\ /\
\i’/
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23.

where f and g are the unique morphisms associated to the terminal object 7. This follows
from the fact that f o o and g o 8 must be the unique morphism from X to 7, which
makes the right-hand diagram commute. Thus, a limit in the cones over the left-hand
diagram, that is, a product, is a limit in the cones over the right-hand diagram, which is a
pullback for this diagram.

Consider the figure below

X~
W
o A 38 9 5c
h, h, h,

A —>B;—5,>C,
2

where g, foa = h3 3. Since the right-hand square is a pullback and since ( f,a, 3) is a cone,
there is a unique #: X — B for which

g0 =0 and hy0= fr,«a *)

Since (a, €) is a cone for the square on the left, there is a unique p1: X — A; for which

hip=a and fiu=2~0 (**)
Now, p is a mediating arrow for the entire rectangle, for we have

hip=a and g fip=g0=p
As to uniqueness, if
hipg=o and g fipg=p

then we claim that y, satisfies (+x), in which case yig = p1. To see this, we have already that
hipto = . Also, we claim that f, = 6, in which case, g, f111o = 9,60 = 3 and we are done.

To show that fiu = 6, we show that f,, satisfies (x). First, g, fi110 = (3 by assumption.
Second,
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hafipg = fahipy = fra

which is the second condition in (x).
As shown in the figure below,

Eom(A,Fm)W hom(A,Fn)

Set

let X = (X, {a,: X — F, }) bea cone over G o F. Then
(Fg)™ o am =an
that is, for any x € X,
(Fg)lom ()] = an()
This shows that
A, = (A {au(2): A= Fn})
is a cone over F. Hence, there is a unique 6,: A — V for which
fn©0r = an()
Let A\: X — hom(4, V) be defined by A(z) = 6,. Then
(Fr 0N (@) = £, (6:) = £, © 6z = o (@)
and so A is a mediating morphism. As to uniqueness, if
(fu on)(@) = an(2)
then
fro (@) = an(x)

which implies that p(z) = 0, = A\(x).
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27.

30.

As to the dual, first we note that for A€C, the hom functor
homew (4, - ): CP = Set
preserves limits, that is,
home( -, A): C°P = Set

preserves limits. But a limit in CP is a colimit in C and so the dual is thathome( -, A) sends
colimits in C to limits in Set.

Suppose that K = (V,{f, | n € J}) is a cone of F; whose image

GK = (GV, {an | n e j})isalimitofFo G.IfX = (X7 {gn | n e .7}) is a cone over
F, then its image GX = (GX, {ng } n e J}) is a cone over F o G and so there is a
unique map 6: GX — GV for which Gf,, o § = Gg,. Since G is fully faithful, there is
aunique \: X — Vfor which § = GX and so G(f,, o \) = Gg,, whence f,, © A = g,,. Thus,
A is a unique cone morphism from K to X'

The elements of the quotient S/ N have the form s + N, where s € S has finite support.
If p;(s) # 0 and p,(s) # 0 for i < 7, then since [p;(s)];; € IV, we have

sN = (9 - [Pz(g)]u) +N

where the latter has ¢th coordinate equal to 0 and support that is properly contained in the
support of s + N. It follows that any x € S/ N has the form s + N, where |supp(s)| = 1, that
is, x = [a;]; + N for a; € M,.

Now let us examine the elements of N. The generators of NV are

[ai]i,j = [aili — [fi,j(ai)}j
where a; € M; and i < j. If k > j, then we can write

[ai]i,j = [a)i — [fu(az)}/

If b; = — fi (a;), then
fj,k(bj) = _fj,k: fi,j(ai) = _fqz,k(ai)
and so
[ai]i,; = [ai]i — [fz‘,k(ai)]k + ([bj]j - [f/k(bf)}k)
which is the sum of two generators, each of which has last term of index k. Thus, since any

x € N is a finite sum of generators, and since the index set [ is directed, there is an index
k for which z is the finite sum of generators whose last terms all have index k. Moreover,
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since we can add generators that have the same pair of indices, we may assume that the first
indices in this sum are distinct. Thus,

w = ([ai)i, = [fixlai)]e + -+ (lai )i, = [fin0(@i)]k)
= ([ai )i, + - +lai )i, = ([fip(@i) e+ + [fi, 1 (@i)]r)

where the i, are distinct and less than k.
Now, if [supp(z)| = 1, that is, if  has exactly one nonzero coordinate, then = must have
the form x = [%L’ for some j, and fi],k(ai,) = 0. In simpler notation, the elements
; .

of NN that have support of size 1 are of the form x = [a;]; for a; € M; and for which
f(a;x) = 0 for some k > i.

The pair (dirlim(M), {m o x; | i € I}) is an initial object in the category of cones under
the diagram M, that is, it is the colimit in the categorical sense. For if (X, {g;}) is a cone
under M, then from the definition of direct sum, there is a unique mediating arrow

0: S — X for which
Oori=g

Now, if x = [a;];,; is a generator of IV, then

0(z) = 0([ail;.;)
= 0(lails) — 0([f;(a)]))
= 0r;(a;) — Ok, (f,-,]-(ai))
= gi(a;) — g;(f, ;(ai))

and since (X, {g;}) is a cone under M, we have
0(z) = g;(a;) — gj(fi,j(ai)) = gi(a;) — g;(a;) =0

Thus, = € ker(f), from which we get N < ker(6). it follows that # induces a map@: S/N —- X
defined by

0([ai]; + N) = 0([a)i) = Oki(a;) = g;(a;)
Thus,
(5 O Ty © fii)(ai) = gi(a;)
and so 0 o (my o k;) = g;. Moreover, if y1 o (T © ;) = g;, then

p(laili + N) = 0(lai); + N)

and so i = 6, which shows that 8 is unique.
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Chapter 5

1. In terms of adjunctions, we have
7c,p: home(C, GD) < homp(FC, D)
and
og.c: homg(E,G'C) < hom¢(F'E, C)
The composition
AE,D = Tp'g,D © OGD,E
maps
homg(E, G'GD) < hom¢(F'E, GD) <+ homp(FF'E, D)
and the map is natural since
g, =Tpp.00¢.g="Tpg.° (0. gxG)
and
)\4,1) = TF",D (o] O'G])’. = (7'4’1) * F,) (o] UGD,»

3. F(X) = F[X], the ring of polynomials in X. f: X — Y can be extended to polynomials.
5. Let uc = 7o, be projection modulo the derived subgroup [C, C]. Then if A is an abelian

group and f: C'— A is a group morphism, it is easy to see that [C, C] < ker( f) and so there

is a unique 7: C/[C, C] — A for which

Tomeoc = f

This shows that (C/[C, Cl, mc,cp: C — C/[C, C]) is a universal pair from C'to U.
7. Letua:a = 1® a. Then if M is an R-module and f: A — U M is a morphism of abelian

groups, let : R x A — M be defined by

7(r;a) =rf(a)

Since this map is Z-bilinear, there is a unique R-map 7': R ® A — M for which
7' (r ® a) = rf (a). Moreover,

Tougia—7(1®a)= f(a)
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9. Note first that
fix(X,v) = {xGX{wc =z} =vX
To see that F'is a left adjoint of I, we show that there is a universal pair
(F(X,0),u(x: (X,0) — IF(X,0))
that is,
(VX uix s (X,0) = (0X,1))

for every (X, v) € Idem. This amounts to showing that for every f: (X, v) — (Y, 1), that s,
for every set function f: X — Y'for which f o v = f, there is a unique 7: vX — Y'for which

TOUXxw) = f
If u(x,)(x) = vX, then this becomes

TO’UIf

and so this uniquely defines 7 as equal to f |, x.
To see that F'is a right adjoint of I, we must show that there is a couniversal pair

(X,1),vx: FIX — X)

that is,

(X, 1),vx: X = X)

for every set X. Let vy = 1. Given f: vY — X, let 7: (Y, v) — (X, 1) be defined by setting
7(y) = f(vy). Then 7(y) = 7(vy) and so 7 is a morphism. Also, T(vy) = f(vy) and so
loFr=f.
11. a) If F* P— @ is isotone then p < p’ implies that Fp < Fp'. Put in categorical terms, if
fip—p then F f: Fp — Fp'.b) If
p<GFp and q< FGq
and if p < Gq then applying F gives
< FGq< Fp
Also, if ¢ < Fp then applying G gives

p < GFp < Gq
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13.

Conversely, if p < Gg iff ¢ < Fp then since Fp < Fp, we have for g = Fp, p < GF p.
The other is similar. c) Since p < G'Fp there is a unique morphism u,: p — GFp.If g € Q)
and f: p — GgqinPthen p < Gg which implies that ¢ < Fp in Q, whence there is a unique
7:q— Fpin Q and so 7: Fp — ¢ in Q. Moreover, Gr: GFp — Gq in P and so

p < GFp < Gq

which is the statement that G7 o u, = f. Thus, (Fp, u,: p — GF)p) is universal from p to G.
d) If

u= {u,p}: Ip—>GF
is the unit of the adjoint pair, then w,: p — G Fp and so p < G'Fp. Similarly, if

v="{v}: FG>1Iq
is the counit then v;: ¢ — FiGq and so ¢ < FGq. Thus, (F, G) is a Galois connection. (The
fact that F'and G are functors implies that they are order-reversing between P and Q.)
For any f: X ® V— W, we seek a unique 7;: X — L(V, W) with the property that

eo (T r® lv) =f

that is,

Tr(z)(v) = flz ©v)
But this uniquely defines 7;as 7, () = f (z ® - ). Note that

7(ax +by)(v) = f((ax + by) @ v)
= flax @ v+ by ® v)
= [ary(z) + b7(y)] (v)

and so 7 is linear.
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S. Roman, An Introduction to the Language of Category Theory, Compact Textbooks
in Mathematics, DOI 10.1007/978-3-319-41917-6, © The Author(s) 2017

= Functor

< Bijection

— Natural transformation
<> Natural bijection
~ Isomorphism

~ Natural isomorphism

- Left adjoint

F Right adjoint

1,4 Identity morphism

(A — C) Comma category of arrows leaving A

(C — A) Comma category of arrows entering A

(A — G) Comma category of arrows leaving A entering G
(G — A) Comma category of arrows entering A leaving G
A(v,w) Set of arcs between v and w in a digraph

B x C Product category

C°® Opposite category

C,D,E Categories

C™ Category of arrows

Cone¢(F) or Conec(D) Category of cones

D, E, F, etc. Diagrams

D(F: J = C) Diagram in C with functor F and index category J
dias(C) Category of diagrams

D¢ Functor category

f~ Follow by f

f~ Preceed by f

hom¢(A, B) Hom-set

hom¢ (A, —) Hom-set category

hom¢(A, -) Hom-set functor

KC, L Cones and cocones

Mor(C) Morphisms of C

Obj(C) Objects of C

V(D) Vertex class of a digraph
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Entering, 2
Cone i
A N a8 Epic, 19
- morphism, Equalizer, 93
- over, 87

AbGrp, 3, 12, 101
Abstract categories, 12

Adjoint functor theorem, 135, 138

Adjunction, 120
Antiparallel, 9
Arcs, 15

Arrow part, 8
Arrows, 2

- entering, 25
- leaving, 24

Base D, 87
Basic fusion formulas, 121
Binatural, 120

C

Canonical projection, 97
Categorical construction, 80
Category, 2

Category of arrows, 23
Category of elements Elts(F), 28
C has binary products, 99-100
C has finite products, 100
Class, 1

Cocomplete, 109

Cocone, 88

Coequalizer, 95

Colimit, 90

Comediating morphisms, 83, 84, 120

- map, 83

Comma

- category, 26

- objects, 24, 26
Commutative diagram, 17
Commutativity rule, 44
Commute, 17
Commuting diagram, 17
Compatible, 2
Component, 44
Composition, 2
Concrete, 11

Constant diagram, 91
Constant-diagram functor, 92
Contravariant functor, 8
Contravariant hom functor, 42

Contravariant power set functor, 10

Coordinate map, 49-51

Coslice category, 25

Counits, 123

Couniversal mapping property
(CMP), 83

Covariant functor, 8

Covariant hom functor, 42

Covariant representable functors, 42

CRng, 3, 21, 101

Currying, 106
Degree, 15

Determinant, 44-45

Diagonal functor, 131
Digraph version, 15

Directed

- graph, 15

- path, 15

Direct Fusion formula, 84, 120
Distinguished submodules, 78
Domain, 2

- functor, 37

Double-dual, 46, 47

— space, 47

Down-set, 37

- functor, 37

Dual category, 21

Dual functor, 48

Dually equivalent, 54

Dual property, 22

Dual space, 46

Dual statement, 22

E

Embedding, 10
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Evaluation, 47, 107
- function, 106
Exponential, 107

F

(S, u)-factorization, 136
Faithful, 10

Field, 3, 30, 101

Field of quotients, 78
Finlnner, 48, 49

Finite diagram, 109
Finitely complete, 109
Forgetful functors, 11
Free Groups, 77-78, 127-128
Full, 10, 12

Fully faithful, 10
Functor, 7, 8

Fusion formula, 84

G

Grp, 3, 11,12, 20, 30, 95,
97,101, 108, 109

H

Hom-set, 2

Identity morphisms, 2

In-degree, 15

Index category, 14

Initial, 20

IntDom, 78

Inverse Fusion formula,
76,120

Invertible, 18

Isomorphic, 18

Isomorphism, 18
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L

Labeled digraph, 15
Leaves, 15

Leaving, 2

Left adjoint, 120
Left-cancellable, 19
Left-equalizes, 93

Left Fusion formula, 126
Left inverse, 18
Left-invertible, 18

Legs, 87

Length, 15
Lexicographic order, 101
Limit, 90

Local arrow part, 8
Locally small category, 2
Loops, 15

M

Maps, 2

Matrix representation functor, 50
Mediating morphisms, 30, 72, 76,

119, 125
- map, 72
- trick, 31
Mod, 21, 95, 101
Modg, 101
Modules, 78
Mon, 3
Monic, 19
Mono, 19
Monotone, 3
Morphisms, 2
Multiset, 109

N

Natural isomorphism, 46
Naturally equivalent, 54
Naturally isomorphic, 46
Naturalness in C, 84, 120

Naturalness in D, 76, 120, 125, 126
Natural transformation, 43

Normal closure, 97

(0

Object part, 8
Objects, 2

Operator adjoint, 47
Opposite category, 21
Out-degree, 15

P

Parallel, 2,9, 15

Poset, 3, 12,37, 101
Poset(P), 30, 101

Power set functor, 10
P, Q € Poset, 107
Preordered category, 5
Preorders, 5

Preserves limits, 133
Principle of duality, 23
Product, 99, 101
Product category, 23
Product functor, 40, 131
Product morphism, 30
Product order, 101
Projection maps, 6, 30, 99
Proper classes, 1
Pullback, 101, 102

Q

Quasiuniversal, 136
Quotient spaces and canonical
projections, 78-79

R

Rel, 4, 12

Riesz functor, 49
Riesz map, 48-49
Right adjoint, 120
Right-cancellable, 19
Right-equalizes, 93
Right Fusion formula, 125
Right inverse, 18
Right-invertible, 18
Right translation, 59
Rng, 3, 12, 30, 95, 101

S

Second adjoint, 47
Self-dual, 23

Set, 3, 11, 20, 30, 76, 95-97, 101,

104, 108
Set’, 127
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Set valued functor, 9
Slice category, 26
Small category, 2
Small diagram, 109
Small sets, 1

SmCat, 11
SmoothMan, 4
Solution, 136

- class, 136

- map, 136

- object, 136

- set condition, 136
Source embedding, 59
Source morphism, 135
Source object, 24, 41
Squaring functor, 39
Subcategory, 12

T

Target functor, 38
Target objects, 24
Tensor product, 79
Terminal, 20

Thin category, 5

Top, 4,12

Transpose, 107
Two-sided inverse, 18

U

Underlying digraph, 16

Underlying-set functor, 11

Unique extension property, 77

Uniquely labeled, 15

Unitary, 48

Unit-counit structure, 123, 126

Universal map, 72

Universal mapping property
(UMP), 71

Universal object, 72

Universal pair, 72

Universal property, 6

Universe, 1

Vv

Vect, 12, 30, 47, 48
Vectg, 101

Vector space bases, 78
Vertex V, 87

Vertices, 15
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Yoneda embedding, 58
Yoneda representative, 61
— map, 62

y 4

Zero morphism, 20-21
Zero object, 20
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