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Abstract: In this note we construct explicit complex and real matrix representations

for the generators of real Clifford algebra C`p,q. The representation is based on Pauli ma-

trices and has an elegant structure similar to the fractal geometry. We find two classes of

representation, the normal representation and exceptional one. The normal representation

is a large class of representation which can only be expanded into 4m+1 dimension, but the

exceptional representation can be expanded as generators of the next period. In the cases

p + q = 4m, the representation is unique in equivalent sense. These results are helpful for

both theoretical analysis and practical calculation. The generators of Clifford algebra are

the faithful basis of p+ q dimensional Minkowski space-time or Riemann space, and Clifford

algebra converts the complicated relations in geometry into simple and concise algebraic

operations, so the Riemann geometry expressed in Clifford algebra will be much simple and

clear.
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I. INTRODUCTION

Clifford algebra was firstly defined by W. K. Clifford in 1878[1], which combines length concept

of Hamilton’s quaternion(1843, [2]) and Grassmann’s exterior algebra(1844, [3]). The introduce of

Dirac’s spinor equation [4] has greatly promoted the research on Clifford algebra. Further devel-

opment of the theory of Clifford algebras is associated with a number of famous mathematicians

and physicists: R. Lipschitz, T. Vahlen, E. Cartan, E. Witt, C. Chevalley, M. Riesz and others

[5, 6, 7].

Due to its excellent properties, Clifford algebra has gradually become a unified language and

efficient tool of modern science, and is widely used in different branches of mathematics, physics
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and engineering[8, 9, 10, 11, 12, 13, 14, 15]. Theoretically we have some equivalent definitions for

Clifford algebras[16, 17]. For the present purpose, we use the original definition of Clifford, which

is based on the generators of basis.

Definition 1 Suppose V is n-dimensional vector space over field R, and its basis {e1, e2, · · · , en}
satisfies the following algebraic rules

eaeb + ebea = 2ηabI, ηab = diag(Ip,−Iq), n = p + q. (1.1)

Then the basis

ek ∈ {I, ea, eab = eaeb, eabc = eaebec, · · · , e12···n = e1e2 · · · en|1 ≤ a < b < c ≤ n} (1.2)

together with relation (1.1) and number multiplication C =
∑

k ckek (∀ck ∈ R) form a 2n-

dimensional real unital associative algebra, which is called real universal Clifford algebra

C`p,q =
⊕n

k=0⊗kV , and C =
∑

k ckek is called Clifford number.

For C`0,2, we have C = tI + xe1 + ye2 + ze12 with

e2
1 = e2

2 = e2
12 = −1, e1e2 = −e2e1 = e12, e2e12 = −e12e2 = e1, e12e1 = −e1e12 = e2. (1.3)

By (1.3) we find C is equivalent to a quaternion, that is we have isomorphic relation C`0,2
∼= H.

Similarly, for C`2,0 we have C = tI + xe1 + ye2 + ze12 with

e2
1 = e2

2 = e2
12 = 1, e1e2 = −e2e1 = e12, e2e12 = −e12e2 = −e1, e12e1 = −e1e12 = −e2. (1.4)

By (1.4), the basis is equivalent to

e1 =


 0 1

1 0


 , e2 =


 1 0

0 −1


 , e12 =


 0 −1

1 0


 . (1.5)

Thus (1.5) means C`2,0
∼= Mat(2,R).

For general cases, the matrix representation of Clifford algebra is an old problem with a long

history. As early as in 1908, Cartan got the following periodicity of 8[16, 17].

Theorem 1 For real universal Clifford algebra C`p,q, we have the following isomorphism

C`p,q
∼=





Mat(2
n
2 ,R), if mod (p− q, 8) = 0, 2

Mat(2
n−1

2 ,R)⊕Mat(2
n−1

2 ,R), if mod (p− q, 8) = 1

Mat(2
n−1

2 ,C), if mod (p− q, 8) = 3, 7

Mat(2
n−2

2 ,H), if mod (p− q, 8) = 4, 6

Mat(2
n−3

2 ,H)⊕Mat(2
n−3

2 ,H), if mod (p− q, 8) = 5.

(1.6)
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In contrast with the above representation for a whole Clifford algebra, we find the representation

of the generators (e1, e2 · · · en) is more fundamental and important in the practical applications.

For example, C`0,2
∼= H is miraculous in mathematics, but it is strange and incomprehensible in

geometry and physics, because the basis e12 ∈ ⊗2V has different geometrical dimensions from that

of e1 and e2. How can e12 take the same place of e1 and e2? Besides, C`2,0 � C`0,2 is also abnormal

in physics, because the different signs of metric are simply caused by different conventions.

For the generators in 1 + 3 dimensional space-time, Pauli got the following result[17, 18, 19].

Theorem 2 Consider two sets of 4× 4 complex matrices γµ, βµ, (µ = 0, 1, 2, 3). The 2 sets satisfy

the following C`1,3

γµγν + γνγµ = βµβν + βνβµ = 2ηµν , (µ, ν = 0, 1, 2, 3). (1.7)

Then there exists a unique (up to multiplication by a complex constant) complex matrix T such

that

γµ = T−1βµT, µ = 0, 1, 2, 3. (1.8)

This theorem is generalized to the cases of real and complex Clifford algebras of even and odd

dimensions in [19, 20].

In this note we construct explicit complex and real matrix representations for the generators

of Clifford algebra. The problem is aroused from the discussion on the specificity of the 1 + 3

dimensional Minkowski space-time with Prof. Rafal Ablamowicz and Prof. Dmitry Shirokov.

They have done a number of researches on general representation theory of Clifford algebra[16,

17, 19, 20, 21, 22, 23, 24]. Many isomorphic or equivalent relations between Clifford algebra and

matrices were provided. However, the representation of generators provides some new insights into

the specific properties of the Minkowski space-time and the dynamics of fields[25, 26, 27], and it

discloses that the 1+3 dimensional space-time is really special.

II. THE CANONICAL MATRIX REPRESENTATION FOR GENERATORS OF

CLIFFORD ALGEBRAS

Denote Minkowski metric by (ηµν) = (ηµν) = diag(1,−1,−1,−1), Pauli matrices σµ by

σµ ≡





 1 0

0 1


 ,


 0 1

1 0


 ,


 0 −i

i 0


 ,


 1 0

0 −1






 , (2.1)

σ0 = σ̃0 = I, σ̃k = −σk, (k = 1, 2, 3). (2.2)
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Define γµ by

γµ =


 0 ϑ̃µ

ϑµ 0


 ≡ Γµ(m), ϑµ = diag(

m︷ ︸︸ ︷
σµ, σµ, · · · , σµ), ϑ̃µ = diag(

m︷ ︸︸ ︷
σ̃µ, σ̃µ, · · · , σ̃µ). (2.3)

which forms the generator or grade-1 basis of Clifford algebra C`1,3. To denote γµ by Γµ(m) is

for the convenience of representation of high dimensional Clifford algebra. For any matrices Cµ

satisfying C`1,3 Clifford algebra, we have[25, 26]

Theorem 3 Assuming the matrices Cµ satisfy anti-commutative relation

CµCν + CνCµ = 2ηµν , (2.4)

then there is a natural number m and an invertible matrix K, such that K−1CµK = γµ. This

means in equivalent sense, we have unique representation (2.3) for generator of C`1,3.

In this note, we derive complex representation of C`(p, q) based on Thm.3, and then derived

the real representations according to the complex representations.

Theorem 4 Let

γ5 = idiag(E,−E), E ≡ diag(I2k,−I2l), k + l = n. (2.5)

Other γµ, (µ ≤ 3) are given by (2.3). Then the generators of Clifford algebra C`1,4 are equivalent

to ∀γµ, (µ = 0, 1, 2, 3, 5).

Proof. Since we have gotten the unique generator γµ for C`1,3, so we only need to derive γ5

for C`1,4. Assuming 4n× 4n matrix

X =


 A B

C D


 , (2.6)

satisfies γµX + Xγµ = 0, (∀µ = 0, 1, 2, 3). By γ0X + Xγ0 = 0 we get D = −A, C = −B. By

γkX + Xγk = 0 we get

ϑkB + Bϑk = 0, ϑkA−Aϑk = 0. (2.7)

By the first equation we get B = 0, and then X = diag(A,−A). Assuming A = (Aab), where ∀Aab

are 2×2 matrices. Then by the second equation in (2.7) we get block matrix A = (KabI2) ≡ K⊗I2,

where K is a n × n matrix to be determined. In this paper, the direct product ⊗ of matrices is

defined as Kronecker product.
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For X2 = I4n we get A2 = I2n, and then K2 = In. Therefore, there exists an invertible n × n

matrix q such that q−1Kq = diag(Ik,−Il). Let 2n× 2n block matrix Q = q ⊗ I2, we have

Q−1AQ = diag(I2k,−I2l) ≡ E, ϑkQ = Qϑk. (2.8)

Let γ5 = idiag(E,−E), then all {γµ, µ = 0, 1, 2, 3, 5} constitute the generators of C`1,4. We prove

the theorem.

Again assuming matrix X1 satisfies γµX1 + X1γ
µ = 0. By the above proof we learn that

X1 = diag(A1,−A1). Solving X1γ
5 + γ5X1 = 0, we get X1 = 0 if k 6= l. In this cases we can not

expand the derived γµ as matrix representation for C`1,5. But in the case k = l, we find X2
1 = −I

have solution, and A1 has a structure of iγ1. Then the construction of generators can proceed. In

this case, we have the following theorem.

Theorem 5 Suppose that 8n× 8n matrices Aµ = diag(Cµ,−Cµ), µ, ν ∈ {0, 1, 2, 3} satisfy

AµAν + AνAµ = 2ηµν , Aµγν
2n + γν

2nAµ = 0, (2.9)

then there is an 8n× 8n matrix K, such that

K−1AµK = diag(γµ
n ,−γµ

n) ≡ βµ
2n, Kγµ

2n = γµ
2nK. (2.10)

In which γµ
n means n σµ in ϑµ. Then {γµ

2n, βµ
2n} constitute all generators of C`2,6.

Proof. By Kγµ
2n = γµ

2nK we get K = diag(L,L) and L = (LabI2) ≡ L̃ ⊗ I2, where L̃ = (Lab) is

a 2n × 2n matrix to be determined. By (2.9) we have Cµ = (Cµ
abI2) ≡ C̃µ ⊗ I2. Then C̃µ also

satisfies C`1,3 Clifford algebra. By Thm.3, there is a matric L̃ such that L̃−1C̃µL̃ = γµ. Then this

K proves the theorem.

Since (iγµ)2 = −(γµ)2, instead of C`p,q we directly use C`p+q in some cases for complex represen-

tation. Similarly to the case C`4, in equivalent sense we have unique matrix representation for C`8.

For C`9, besides the generators constructed by the above Thm.5, we need another generator γ9. By

calculation similar to (2.8), we find γ9 = diag(E,−E,−E, E) and E = diag(I2k,−I2l), k + l = n.

For C`10, we also have two essentially different cases similar to C`6. If k 6= l, γ9 and the above

generators cannot be expanded as generators of C`10. We call this representation as normal rep-

resentation. Clearly k 6= l is a large class of representations which are not definitely equivalent.

In the case of k = l, the above generators can be uniquely expanded as generators for C`12. We

call this representation as exceptional representation. The other generators are given by

αµ
4n = diag(γµ

n ,−γµ
n ,−γµ

n , γµ
n)⊗ I4. (2.11)
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In order to express the general representation of generators, we introduce some simple notations.

Im stands for m×m unit matrix. For any matrix A = (Aab), denote block matrix

A⊗ Im = (AabIm), [A,B, C, · · · ] = diag(A,B, C, · · · ). (2.12)

Obviously, we have I2⊗ I2 = I4, I2⊗ I2⊗ I2 = I8 and so on. In what follows, we use Γµ(m) defined

in (2.3). For µ ∈ {0, 1, 2, 3}, Γµ(m) is 4m × 4m matrix, which constitute the generator of C`1,3.

Similarly to the above proofs, we can check the following theorem by method of induction.

Theorem 6 1◦ In equivalent sense, for C`4m, the matrix representation of generators is uniquely

given by

{
Γµ(n),

[
Γµ

(
n
22

)
, −Γµ

(
n
22

)]⊗ I2,

[[
Γµ

(
n
24

)
,−Γµ

(
n
24

)]
, − [

Γµ
(

n
24

)
,−Γµ

(
n
24

)]]⊗ I22 , (2.13)
[
Γµ

(
n
26

)
,−Γµ

(
n
26

)
,−Γµ

(
n
26

)
,Γµ

(
n
26

)
,−Γµ

(
n
26

)
,Γµ

(
n
26

)
,Γµ

(
n
26

)
,−Γµ

(
n
26

)]⊗ I23 , · · ·} .

In which n = 2m−1N , N is any given positive integer. All matrices are 2m+1N × 2m+1N type.

2◦ For C`4m+1, besides (2.13) we have another real generator

γ4m+1 = [E,−E,−E, E,−E, E, E,−E · · · ], E = [I2k,−I2l]. (2.14)

If and only if k = l, this representation can be uniquely expanded as generators of C`4m + 4.

3◦ For any C`p,q, {p, q|p + q ≤ 4m, mod (p + q, 4) 6= 1}, the combination of p + q linear

independent generators {γµ, iγν} taking from (2.13) constitutes the complete set of generators. In

the case {p, q|p + q ≤ 4m, mod (p + q, 4) = 1}, besides the combination of {γµ, iγν}, we have

another normal representation of generator taking the form (2.14) with k 6= l.

4◦ For C`m, (m < 4), we have another 2 × 2 Pauli matrix representation for its generators

{σ1, σ2, σ3}.
Then we get all complex matrix representations for generators of real C`p,q explicitly.

The real representation of C`p,q can be easily constructed from the above complex represen-

tation. In order to get the real representation, we should classify the generators derived above.

Let Gc(n) stand for any one set of all complex generators of C`n given in Thm.6, exceptional

representation or normal one, and set the coefficients before all σµ and σ̃µ as 1 or i. Denote Gc+

stands for the set of complex generators of C`n,0 and Gc− for the set of complex generators of

C`0,n. Then we have

Gc = Gc+ ∪Gc−, Gc− ∼= iGc+. (2.15)
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By the construction of generators, we have only two kinds of γµ matrices. One is the matrix

with real nonzero elements, and the other is that with imaginary nonzero elements. This is because

all nonzero elements of σ2 are imaginary but all other σµ(∀µ 6= 2) are real. Again assume

Gc+ = Gr ∪Gi, Gr = {γµ
r |γµ

r is real}, Gi = {γµ
i |γµ

i is imaginary}. (2.16)

Denote J2 = iσ2, we have J2
2 = −I2. J2 becomes the real matrix representation for imaginary

unit i. Using the direct products of complex generators with (I2, J2), we can easily construct the

real representation of all generators for C`p,q from Gc+ as follows.

Theorem 7 1◦ For C`n,0, we have real matrix representation of generators as

Gr+ = {γµ ⊗ I2 (if γµ ∈ Gr); iγν ⊗ J2 (if γν ∈ Gi)}. (2.17)

2◦ For C`0,n, we have real matrix representation of generators as

Gr− = {γµ ⊗ J2|γµ ∈ Gr+}. (2.18)

3◦ For C`p,q, we have real matrix representation of generators as

Gr =



Γµa

+ ,Γνb−

∣∣∣∣∣∣
Γµa

+ = γµa ∈ Gr+, (a = 1, 2, · · · , p)

Γνb− = γνb ∈ Gr−, (b = 1, 2, · · · , q)



 . (2.19)

Obviously we have Cp
nCq

n = (Cp
n)2 choices for the real generators of C`p,q from each complex

representation.

Proof. By calculating rules of block matrix, it is easy to check the following relations

(γµ ⊗ I2)(γν ⊗ J2) + (γν ⊗ J2)(γµ ⊗ I2) = (γµγν + γνγµ)⊗ J2, (2.20)

(γµ ⊗ J2)(γν ⊗ J2) + (γν ⊗ J2)(γµ ⊗ J2) = −(γµγν + γνγµ)⊗ I2. (2.21)

By these relations, Thm.7 becomes a direct result of Thm.6.

For example, we have 4× 4 real matrix representation for generators of C`0,3 as

i{σ1, σ2, σ3} ∼= {σ1 ⊗ J2, iσ
2 ⊗ I2, σ

3 ⊗ J2} ≡ {Σ1,Σ2,Σ3} =






0 0 0 1

0 0 −1 0

0 1 0 0

−1 0 0 0




,




0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0




,




0 1 0 0

−1 0 0 0

0 0 0 −1

0 0 1 0








. (2.22)

It is easy to check

ΣkΣl + ΣlΣk = −2δkl, ΣkΣl − ΣlΣk = 2εklmΣm. (2.23)
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III. DISCUSSION AND CONCLUSION

For different purpose, Clifford algebra has several different definitions, and 5 kinds are listed in

references [16, 17, 28]. The following definition is the most commonly used in theoretical analysis.

Definition 2 Suppose (V, Q) is an n < ∞ dimensional quadratic space over field F, and A is a

unital associative algebra. There is an injective mapping J : V → A such that

i) I /∈ J(V );

ii) (J(x))2 = Q(x)I, ∀x ∈ V ;

iii) J(V ) generates A.

Then the set A together with mapping J is called Clifford algebra C`(V, Q) over F.

The above definition includes the case of degenerate Clifford algebra C`p,q,r. For example, if

Q(x) = 0, the Clifford algebra C`0 becomes Grassmann algebra. In the non-degenerate case, if

the standard orthogonal basis of V is introduced, we can derive Definition 1. The definition based

on the quotient algebra of tensor algebra in V is introduced by Chevalley[16, 17], but it is too

abstract for common readers. In the author’s opinion, the most efficient and convenient definition

of Clifford algebra should be as follows.

Definition 3 Assume the element of an n = p + q dimensional space-time Mp,q over R is

described by

dx = γµdxµ = γµdxµ = γaδX
a = γaδXa, (3.1)

where γa is the local orthogonal frame and γa the coframe. The space-time is endowed with distance

ds = |dx| and oriented volumes dVk calculated by

dx2 =
1
2
(γµγν + γνγµ)dxµdxν = gµνdxµdxν = ηabδX

aδXb, (3.2)

dVk = dx1 ∧ dx2 ∧ · · · ∧ dxk = γµν···ωdxµ
1dxν

2 · · · dxω
k , (1 ≤ k ≤ n), (3.3)

in which Minkowski metric (ηab) = diag(Ip,−Iq), and Grassmann basis γµν···ω = γµ∧γν ∧· · ·∧γω ∈
Λk(Mp,q). Then the Clifford-Grassmann number

C = c0I + cµγµ + cµνγ
µν + · · ·+ c12···nγ12···n, (∀ck ∈ R) (3.4)

together with multiplication rule of basis given in (3.2) and associativity define the 2n-dimensional

real universal geometric algebra C`p,q.

In some sense, Definition 1 is for all scientists, Definition 2 is for mathematicians, and the

definition of Chevalley is only for algebraists. However, the Definition 3 can be well understood by
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all common readers including high school students, which directly connects normal intelligence with

the deepest wisdom of Nature[26, 27]. From the geometric and physical point of view, the definition

of Clifford basis in Definition 1 is inappropriate, because in the case of non-orthogonal basis,

e12 = e1¯e2 +e1∧e2 ∈ Λ0∪Λ2 is a mixture with different dimensions, and the geometric meaning

which represents is not clear. But the Grassmann basis in Definition 3 is not the case, where each

term has a specific geometric meaning and has covariant form under coordinate transformation.

The coefficients in (3.4) are all tensors with clear geometric and physical meanings.

To use the Definition 3, the transformation law of Grassmann basis under Clifford product is

important. Now we discuss it briefly.

Theorem 8 For γµ and γθ1θ2···θk ∈ Λk, we have

γµγθ1θ2···θk =
(
gµθ1γθ2···θk − gµθ2γθ1θ3···θk + · · ·+ (−)k+1gµθkγθ1···θk−1

)
+ γµθ1···θk , (3.5)

γθ1θ2···θkγµ =
(
(−)k+1gµθ1γθ2···θk + (−)kgµθ2γθ1θ3···θk + · · ·+ gµθkγθ1···θk−1

)
+ γθ1···θkµ. (3.6)

Proof. Clearly γµγθ1θ2···θk ∈ Λk−1 ∪ Λk+1, so we have

γµγθ1θ2···θk = a1g
µθ1γθ2···θk + a2g

µθ2γθ1θ3···θk + · · ·+ akg
µθkγθ1···θk−1 + Aγµθ1···θk . (3.7)

Permuting the indices θ1 and θ2, we find a2 = −a1. Let µ = θ1, we get a1 = 1. Check the monomial

in exterior product, we get A = 1. Thus we prove (3.5). In like manner we prove (3.6).

In the case of multivectors γµ1µ2···µlγθ1θ2···θk , we can define multi-inner product A ¯k B as

follows[29]

γµν ¯ γαβ = gµβγνα − gµαγνβ + gναγµβ − gνβγµα, (3.8)

γµν ¯2 γαβ = gµβgνα − gµαgνβ , · · · (3.9)

For example, we have

γµνγαβ = γµν ¯2 γαβ + γµν ¯ γαβ + γµναβ . (3.10)

The derivation of the paper is constructive, so it can be used for both theoretical analysis

and practical calculation. From the results we find C`1,3 has specificity and takes fundamental

place in Clifford algebra theory. By the above representations of generators, we can easily get the

relations between bases such as γabc = iεabcdγdγ
5 in C`1,3. The generators of Clifford algebra are

the faithful bases of p + q dimensional Minkowski space-time or pseudo-Riemann space as shown

in (3.1)-(3.4), and Clifford algebra converts the complicated relations in geometry into simple and

concise algebraic calculus[27], so the Riemann geometry expressed in Clifford algebra will be much

simpler and clearer than current version.
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