Andrius Kulikauskas

  • +370 607 27 665
  • My work is in the Public Domain for all to share freely.

Lietuvių kalba

Understandable FFFFFF

Questions FFFFC0



History of Philosophy, History of Analytic Philosophy

The Dialectic of Jesus of Nazareth


Truths of the Heart and of the World

Philosophy of Science

Between Philosophy and Technology: Investigatory Questions

Logic and Philosophy of Mathematics

Ways of Figuring Things Out in Mathematics

Philosophy of Language

Narration and Folk Tales

Philosophy of Mind and Action

Counterquestions With Applications to Nonviolent Engagement


Absolute Truth in terms of Divisions of Everything

Philosophical Methodology and Meta-Philosophy

From Relative Truth to Absolute Truth


Social and Political Philosophy, Philosophy of Law

Historical Responsibility: The Holocaust in Lithuania


Beauty and Twelve...

Philosophy of Religion

A Science of Prayer

God's Question: Is God Necessary?

I imagine how logic might unfold along with God.

I imagine everything from God's point of view. This yields an odd kind of subjective logic which is relevant for an unconditional perspective and its relations with itself. I describe it as God's dance, a system of 24 perspectives by which I imagine God. I draw on my own personal experience of God and also on my explorations of the limits of my imagination.

I imagine God who is prior to all things and concepts. I can imagine only one question that moves him. God asks himself, is God necessary? Would God exist even if God did not exist?

Formally, we might think of God as a state of contradiction in which all things are true. The formal structure for that state is everything, a concept which can be taken as an anchor for absolute truth: it has no external context (it ever includes it!), no internal structure (may be chaotic or orderly), is the simplest algorithm (accepts all things) and a required concept (we all have it). God may differentiate himself through divisions of everything. Consider a proof by contradiction of whether God is necessary. It divides everything into two perspectives: a spiritual world where God exists because God exists, and a physical world where God does not exist but yet perhaps God arises. I will describe how such divisions make way for a state of noncontradiction, a logical framework which defines freedom, the structure of goodness. Yet, informally, I imagine God as a spirit which precedes and yields its formal structure and logic. Would God exist even if God did not exist? What God thinks is what God does and what is. And so God makes way for the most challenging circumstances for his arisal, our human condition. God who understands ("the Father" for whom God is I) makes way for God who comes to understand ("the Son" for whom God is You). They are the same because they understand the same God ("the Spirit" for whom God is Other).

Imagine now the outlook of God the Son who arises and asks, Who am I? Am I God? I describe a structure of eight perspectives (as in the prayer "Our Father") which unites two outlooks, the Father's empathy for the "bad child" and the Son's empathy for the "good child". The bad child insists that "God has to be good" and "life has to be fair", and discovers God's perspective by reaching their own limits. The good child allows that "God doesn't have to be good" and "life doesn't have to be fair" so as to work together with God for a shared culture of living, growing and learning forever, here and now.

I describe the outlook of God the Spirit in terms of four positive commandments ("Love God") by which the Father goes beyond himself into the Son, and six negative commandments ("Love your neighbor as yourself") by which the Son is free to identify with the Father.

Finally, by a three-cycle of taking a stand, following through and reflecting, we ourselves ever identify the unity of God, the unity of the individual, and the unity of all.

The Math In Our Minds By Which We Do Math With Symbols

How can we make sense of the entirety of mathematics? To what extent can we think of mathematical concepts as naturally growing more complex, more concrete and more abstract? By what criteria can we identify the simplest concepts from which all others unfold? In what context can we meaningfully discuss the role of mathematical beauty, intuition, understanding, discovery and community? Can a science of math not only discuss math but also offer practical guidance to help math advance?

Let us distinguish the explicit math which we express with symbols on paper or some other medium and the implicit math which we perform in our minds to discover solutions and apply ideas. How can we describe our experience of our own mathematical activity?

George Polya, in his book, How to Solve It, notes the role of patterns. He considers Euclid's problem of how to construct an equilateral triangle. If we are given the side AB, how do we construct the other two? The solution is a recurring idea which Polya calls the "pattern of two loci". We think of there being two separate conditions. One side must extend a length AB from the point A. Another side must extend a length AB from the point B. We thus draw two circles of radius AB centered at A and B. The points where the two circles intersect are those where we can draw a third point C which satisfies both conditions so that our triangle is equilateral.

In our minds, the problem is abstract and simple. Imagine a powerset lattice of conditions. Circle A is one condition, circle B is another condition, and the intersection of A and B satisifies the union of these two conditions. Our minds thus solve the surface problem (constructing a triangle) by considering a simpler, deeper structure (a lattice of conditions). This brings to mind linguist Noah Chomsky's work in syntax and architect Christopher Alexander's work on pattern languages.

The solution took place without supposing a particular axiomatic system. Instead, it made use of a mental construct (the lattice of conditions) that may require practice to consciously master, yet feels native to our cognitive environment, is not restricted to the field of mathematics, and seems pre-mathematical. We may distinguish as cognitively "natural" those math structures which are used by the mind in solving math problems.

I collected such problem solving patterns discussed in Paul Zeitz's book The Art and Craft of Problem Solving and other sources. I sorted almost 200 examples into 24 such patterns. Each distinct pattern makes use of a structure which is familiar to mathematicians and yet is not explicit but mental.

I present the 24 patterns in a system which I argue suggests they are complete.

12 of the patterns take place as if prior to an explicit mathematical system. We may think of them as being performed on a generic "mental sheet". We may work on a single mental sheet or a sequence of sheets. This option is itself meaningful as the notion of "independent trials".

Algebra has us work with a single sheet. We may solve a problem by defining its center (origin), by applying parity (as in multiplying numerator and denominator by the same expression), by considering a set (for example, the roots of a polynomial) and a list (a basis of a vector space).

Analysis has us work with an arbitrarily large sequence of sheets, as in applying mathematical induction. We can then focus on maximal or minimal elements, least upper bounds or greatest lower bounds, and also limits.

Algebra and analysis are stitched together by a three-cycle of taking-a-stand, following through and reflecting which is akin to the scientific method of identifying a hypothesis, conducting an experiment and considering the results. In math, the stitching takes place by extending the domain of an existing truth (such as an addition formula), leveraging continuity to find points of interest (such as critical points), and consequently producing a self-superimposed sequence (a generating function).

This activity yields a mathematical system in the form of a symmetry group of transformations. This system then allows us to compare four different metalogics for the "mental sheet" defined by the system and a "mental sheet" of our mind beyond it.

The system suggests a role for 4 different spatial geometries (based on affine paths-forward, projective lines-back-and-forth, conformal angles-around, and symplect oriented-areas-within) which relate to 4 infinite families of polytopes, An (simplexes), Cn (cross polytopes), Bn (hypercubes), Dn (demicubes), whose symmetry groups are also the Weyl groups for the root systems of the classical Lie algebras.

Six network structures are six specifications of one geometry in terms of another. Yet ultimately we need to consider the greater context. If I ask you, what is 10+4? You may say 14, but the answer is 2, because I am thinking about a clock. Which is to say that what we know may be completely irrelevant and plain wrong because ultimately it all depends on context. We have to be willing to go back to the blank sheet.


Naujausi pakeitimai

Puslapis paskutinį kartą pakeistas 2017 sausio 17 d., 19:59