Iš Gvildenu svetainės

Book: TrivialLieGroups

See: Math Notebook, {$A_1$}, {$A_2$}

Understand trivial Lie groups.

Abelian groups

For Abelian groups, the commutator is 0.

Circle group

The circle group consists of the rotations in a circle.

{$\mathrm{SO}(2)$} represents them as {$2 \times 2$} real matrices given in terms of sine and cosine of an angle theta.

\begin{pmatrix} \mathrm{cos\,\theta} & -\mathrm{sin\,\theta} \\ \mathrm{sin\,\theta} & \mathrm{cos\,\theta} \end{pmatrix}

Then the determinant is {$1$} regardless of angle. It gives the length of the radius of the unit circle.

Reflections are given by:

\begin{pmatrix} \mathrm{cos\,2\theta} & \mathrm{sin\,2\theta} \\ \mathrm{sin\,2\theta} & -\mathrm{cos\,2\theta} \end{pmatrix}

{$\mathrm{U}(1)$} represents rotations as {$1 \times 1$} matrices in a complex number {$e^{i\theta}$}. Then the determinant is {$1$} only when {$\theta = 0$}. Thus {$\mathrm{SU}(1)$} is the trivial group.

Complex conjugation is reflection about the {$x$} axis.



Parsiųstas iš http://www.ms.lt/sodas/Book/TrivialLieGroups
Puslapis paskutinį kartą pakeistas 2019 rugsėjo 06 d., 15:41